首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing rechargeable lithium ion batteries with fast charge/discharge rate, high capacity and power, long lifespan, and broad temperature adaptability is still a significant challenge. In order to realize the fast and efficient transport of ions and electrons during the charging/discharging process, a 3D hierarchical carbon‐decorated Li3V2(PO4)3 is designed and synthesized with a nanoscale amorphous carbon coating and a microscale carbon network. The Brunauer–Emmett–Teller (BET) surface area is 65.4 m2 g?1 and the porosity allows for easy access of the electrolyte to the active material. A specific capacity of 121 mAh g?1 (91% of the theoretical capacity) can be obtained at a rate up to 30 C. When cycled at a rate of 20 C, the capacity retention is 77% after 4000 cycles, corresponding to a capacity fading of 0.0065% per cycle. More importantly, the composite cathode shows excellent temperature adaptability. The specific discharge capacities can reach 130 mAh g?1 at 20 C and 60 °C, and 106 mAh g?1 at 5 C and –20 °C. The rate performance and broad temperature adaptability demonstrate that this hierarchical carbon‐decorated Li3V2(PO4)3 is one of the most attractive cathodes for practical applications.  相似文献   

2.
A simple ball‐milling method is used to synthesize a tin oxide‐silicon carbide/few‐layer graphene core‐shell structure in which nanometer‐sized SnO2 particles are uniformly dispersed on a supporting SiC core and encapsulated with few‐layer graphene coatings by in situ mechanical peeling. The SnO2‐SiC/G nanocomposite material delivers a high reversible capacity of 810 mA h g?1 and 83% capacity retention over 150 charge/discharge cycles between 1.5 and 0.01 V at a rate of 0.1 A g?1. A high reversible capacity of 425 mA h g?1 also can be obtained at a rate of 2 A g?1. When discharged (Li extraction) to a higher potential at 3.0 V (vs. Li/Li+), the SnO2‐SiC/G nanocomposite material delivers a reversible capacity of 1451 mA h g?1 (based on the SnO2 mass), which corresponds to 97% of the expected theoretical capacity (1494 mA h g?1, 8.4 equivalent of lithium per SnO2), and exhibits good cyclability. This result suggests that the core‐shell nanostructure can achieve a completely reversible transformation from Li4.4Sn to SnO2 during discharging (i.e., Li extraction by dealloying and a reversible conversion reaction, generating 8.4 electrons). This suggests that simple mechanical milling can be a powerful approach to improve the stability of high‐performance electrode materials involving structural conversion and transformation.  相似文献   

3.
While the practical application of electrode materials depends intensively on the Li+ ion storage mechanisms correlating ultimately with the coulombic efficiency, reversible capacity, and morphology variation of electrode material upon cycling, only intercalation‐type electrode materials have proven viable for commercialization up to now. This paper reviews the promising anode materials of metal vanadates (MxVyOz, M = Co, Cu, Mn, Fe, Zn, Ni, Li) that have high capacity, low cost, and abundant resource, and also discusses the related Li+ ion storage mechanism. It is concluded that most of these (MxVyOz, M = Co, Cu, Mn, Fe, Zn, Ni) exhibit irreversible redox reactions upon lithiation/delithiation accompanied by large volume expansion, which is not favorable for industrial applications. In particular, Li3VO4 with specific intercalation Li+ ion storage mechanism and compatible merits of safety and energy density exhibits great potential for practical application. This review systematically summarizes the latest progress in Li3VO4 research, including the representative fabrication approaches for advanced morphology and state‐of‐the‐art technologies to boost performance and the morphology variation associated with Li+ ion storage mechanisms. Furthermore, an outlook on where breakthroughs for Li3VO4 may be most likely achieved will be provided.  相似文献   

4.
Li2MnO3 is the parent compound of the well‐studied Li‐rich Mn‐based cathode materials xLi2MnO3·(1‐x)LiMO2 for high‐energy‐density Li‐ion batteries. Li2MnO3 has a very high theoretical capacity of 458 mA h g?1 for extracting 2 Li. However, the delithiation and lithiation behaviors and the corresponding structure evolution mechanism in both Li2MnO3 and Li‐rich Mn‐based cathode materials are still not very clear. In this research, the atomic structures of Li2MnO3 before and after partial delithiation and re‐lithiation are observed with spherical aberration‐corrected scanning transmission electron microscopy (STEM). All atoms in Li2MnO3 can be visualized directly in annular bright‐field images. It is confirmed accordingly that the lithium can be extracted from the LiMn2 planes and some manganese atoms can migrate into the Li layer after electrochemical delithiation. In addition, the manganese atoms can move reversibly in the (001) plane when ca. 18.6% lithium is extracted and 12.4% lithium is re‐inserted. LiMnO2 domains are also observed in some areas in Li1.63MnO3 at the first cycle. As for the position and occupancy of oxygen, no significant difference is found between Li1.63MnO3 and Li2MnO3.  相似文献   

5.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

6.
Titanium niobium oxide (TiNb2O7) has been recognized as a promising anode material for lithium‐ion batteries (LIBs) in view of its potential to operate at high rates with improved safety and high theoretical capacity of 387 mAh g?1. However, it suffers from poor Li+ ion diffusivity and low electronic conductivity originated from its wide band gap energy (Eg > 2 eV). Here, porous TiNb2O7 microspheres (PTNO MSs) are prepared via a facile solvothermal reaction. PTNO MSs have a particle size of ≈1.2 μm and controllable pore sizes in the range of 5–35 nm. Ammonia gas nitridation treatment is conducted on PTNO MSs to introduce conducting Ti1?xNbxN layer on the surface and form nitridated PTNO (NPTNO) MSs. The porous structure and conducting Ti1?xNbxN layer enhance the transport kinetics associated with Li+ ions and electrons, which leads to significant improvement in electrochemical performance. As a result, the NPTNO electrode shows a high discharge capacity of ≈265 mAh g?1, remarkable rate capability (≈143 mAh g?1 at 100 C) and durable long‐term cyclability (≈91% capacity retention over 1000 cycles at 5 C). These results demonstrate the great potential of TiNb2O7 as a practical high‐rate anode material for LIBs.  相似文献   

7.
Silicon‐based anodes are an appealing alternative to graphite for lithium‐ion batteries because of their extremely high capacity. However, poor cycling stability and slow kinetics continue to limit the widespread use of silicon in commercial batteries. Performance improvement has been often demonstrated in nanostructured silicon electrodes, but the reaction mechanisms involved in the electrochemical lithiation of nanoscale silicon are not well understood. Here, in‐situ synchrotron X‐ray diffraction is used to monitor the subtle structural changes occurring in Si nanoparticles in a Si‐C composite electrode during lithiation. Local analysis by electron energy‐loss spectroscopy and transmission electron microscopy is performed to interrogate the nanoscale morphological changes and phase evolution of Si particles at different depths of discharge. It is shown that upon lithiation, Si nanoparticles behave quite differently than their micrometer‐sized counterparts. Although both undergo an electrochemical amorphization, the micrometer‐sized silicon exhibits a linear transformation during lithiation, while a two‐step process occurs in the nanoscale Si. In the first half of the discharge, lithium reacts with surfaces, grain boundaries and planar defects. As the reaction proceeds and the cell voltage drops, lithium consumes the crystalline core transforming it into amorphous LixSi with a primary particle size of just a few nanometers. Unlike the bulk silicon electrode, no Li15Si4 or other crystalline LixSi phases were formed in nanoscale Si at the fully‐lithiated state.  相似文献   

8.
Current battery technologies are known to suffer from kinetic problems associated with the solid‐state diffusion of Li+ in intercalation electrodes materials. Not only the use of nanostructure materials but also the design of electrode architectures can lead to more advanced properties. Here, advanced electrode architectures consisting of carbon textiles conformally covered by Li4Ti5O12 nanocrystal are rationally designed and synthesized for lithium ion batteries. The efficient two‐step synthesis involves the growth of ultrathin TiO2 nanosheets on carbon textiles, and subsequent conversion into spinel Li4Ti5O12 through chemical lithiation. Importantly, this novel approach is simple and general, and it is used to successfully produce LiMn2O4/carbon composites textiles, one of the leading cathode materials for lithium ion batteries. The resulting 3D textile electrode, with various advantages including the direct electronic pathway to current collector, the easy access of electrolyte ions, the reduced Li+/e? diffusion length, delivers excellent rate capability and good cyclic stability over the Li‐ion batteries of conventional configurations.  相似文献   

9.
Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li3AlH6‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH4 and Li with the help of fast electron and Li‐ion conductors (C and P63mc LiBH4). This nanocomposite consists of dispersive Al nanograins and an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g?1), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g?1 at 1 A g?1) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li3AlH6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior.  相似文献   

10.
A new approach to intentionally induce phase transition of Li‐excess layered cathode materials for high‐performance lithium ion batteries is reported. In high contrast to the limited layered‐to‐spinel phase transformation that occurred during in situ electrochemical cycles, a Li‐excess layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is completely converted to a Li4Mn5O12‐type spinel product via ex situ ion‐exchanges and a post‐annealing process. Such a layered‐to‐spinel phase conversion is examined using in situ X‐ray diffraction and in situ high‐resolution transmission electron microscopy. It is found that generation of sufficient lithium ion vacancies within the Li‐excess layered oxide plays a critical role for realizing a complete phase transition. The newly formed spinel material exhibits initial discharge capacities of 313.6, 267.2, 204.0, and 126.3 mAh g?1 when cycled at 0.1, 0.5, 1, and 5 C (1 C = 250 mA g?1), respectively, and can retain a specific capacity of 197.5 mAh g?1 at 1 C after 100 electrochemical cycles, demonstrating remarkably improved rate capability and cycling stability in comparison with the original Li‐excess layered cathode materials. This work sheds light on fundamental understanding of phase transitions within Li‐excess layered oxides. It also provides a novel route for tailoring electrochemical performance of Li‐excess layered cathode materials for high‐capacity lithium ion batteries.  相似文献   

11.
An innovative and environmentally friendly battery chemistry is proposed for high power applications. A carbon‐coated ZnFe2O4 nanoparticle‐based anode and a LiFePO4‐multiwalled carbon nanotube‐based cathode, both aqueous processed with Na‐carboxymethyl cellulose, are combined, for the first time, in a Li‐ion full cell with exceptional electrochemical performance. Such novel battery shows remarkable rate capabilities, delivering 50% of its nominal capacity at currents corresponding to ≈20C (with respect to the limiting cathode). Furthermore, the pre‐lithiation of the negative electrode offers the possibility of tuning the cell potential and, therefore, achieving remarkable gravimetric energy and power density values of 202 Wh kg?1 and 3.72 W kg?1, respectively, in addition to grant a lithium reservoir. The high reversibility of the system enables sustaining more than 10 000 cycles at elevated C‐rates (≈10C with respect to the LiFePO4 cathode), while retaining up to 85% of its initial capacity.  相似文献   

12.
Herein, it is proposed that poly(methylmethacrylate) (PMMA), a widely‐used thermoplastic in our daily life, can be used as an abundant, stable, and high‐performance anode material for rechargeable lithium‐ion batteries through a novel concept of lithium storage mechanism. The specially‐designed PMMA thin‐film electrode exhibits a high reversible capacity of 343 mA h g?1 at C/25 and maintains a capacity retention of 82.6% of that obtained at C/25 when cycled at 1 C rate. Meanwhile, this pristine PMMA electrode without binder and conductive agents shows a high reversible capacity of 196.8 mA h g?1 after 150 cycles at 0.2 C with a capacity retention of 73.5%. Additionally, PMMA‐based binder is found to enhance both the reversible capacity and rate capability of the graphite electrodes. Hence, this new type of organic electrode material may have a great opportunity to be utilized as the active material or rechargeable binder in flexible or transparent thin‐film batteries and all‐solid batteries. The present work also provides a new way of seeking more proper organic electrode materials which don't contain conjugated structures and atoms with lone pair electrons required in traditional organic electrode materials.  相似文献   

13.
Silicon is promising as a high energy anode for next‐generation lithium‐ion batteries. However, severe capacity fading upon cycling associated with huge volume change is still an obstacle for silicon toward practical applications. Herein, the authors report that Si‐substituted Zn2(GeO4)0.8(SiO4)0.2 nanowires can effectively suppress volume expansion effect, exhibiting high specific capacity (1274 mA h g?1 at 0.2 A g?1 after 700 cycles) and ultralong cycling stability (2000 cycles at 5 A g?1 with a capacity decay rate of 0.008% per cycle), which represents outstanding comprehensive performance. The superior performance is ascribed to the substitution of Si atom that imparts to the nanowires not only high reactivity and reversibility, but also the unique stress‐relieved property upon lithiation which is further confirmed by detailed density‐functional theory computation. This work provides a new guideline for designing high‐performance Si‐based materials toward practical energy storage applications.  相似文献   

14.
A NaSICON‐type Li+‐ion conductive membrane with a formula of Li1+ x Y x Zr2? x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid‐electrolyte/separator to suppress polysulfide‐crossover in lithium‐sulfur (Li‐S) batteries. The LYZP membrane with a reasonable Li+‐ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li‐S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li‐S batteries show greatly enhanced cyclability in contrast to the conventional Li‐S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li‐metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g?1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade‐rate of <0.07% per cycle.  相似文献   

15.
Anatase TiO2 is an extensively studied anode material for lithium‐ion batteries because of its superior capability of storing Li+ electrochemically. Here reversible lithium storage of TiO2 is achieved chemically using redox targeting reactions. In the presence of a pair of redox mediators, bis(pentamethylcyclopentadienyl)cobalt (CoCp* 2) and cobaltocene (CoCp2) in an electrolyte, TiO2 and its lithiated form Li x TiO2 can be reduced and oxidized by CoCp* 2 and CoCp2 +, respectively, which accompany Li+ insertion and extraction, albeit without attaching the TiO2 onto the electrode. The reversible chemical lithiation/delithiation and the involved phase transitions are unambiguously confirmed using density functional theory (DFT) calculations, UV‐vis spectroscopy, X‐ray photoelectron spectoscopy (XPS), and Raman spectroscopy. A redox flow lithium‐ion battery (RFLB) half‐cell is assembled and evaluated, which is a critical step towards the development of RFLB full cells.  相似文献   

16.
Herein, a Mn‐based metal–organic framework is used as a precursor to obtain well‐defined α‐MnS/S‐doped C microrod composites. Ultrasmall α‐MnS nanoparticles (3–5 nm) uniformly embedded in S‐doped carbonaceous mesoporous frameworks (α‐MnS/SCMFs) are obtained in a simple sulfidation reaction. As‐obtained α‐MnS/SCMFs shows outstanding lithium storage performance, with a specific capacity of 1383 mAh g?1 in the 300th cycle or 1500 mAh g?1 in the 120th cycle (at 200 mA g?1) using copper or nickel foil as the current collector, respectively. The significant (pseudo)capacitive contribution and the stable composite structure of the electrodes result in impressive rate capabilities and outstanding long‐term cycling stability. Importantly, in situ X‐ray diffraction measurements studies on electrodes employing various metal foils/disks as current collector reveal the occurrence of the conversion reaction of CuS at (de)lithiation process when using copper foil as the current collector. This constitutes the first report of the reaction mechanism for α‐MnS, eventually forming metallic Mn and Li2S. In situ dilatometry measurements demonstrate that the peculiar structure of α‐MnS/SCMFs effectively restrains the electrode volume variation upon repeated (dis)charge processes. Finally, α‐MnS/SCMFs electrodes present an impressive performance when coupled in a full cell with commercial LiMn1/3Co1/3Ni1/3O2 cathodes.  相似文献   

17.
Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres are synthesized through a three‐step hydrothermal procedure. The average thickness of the Li4Ti5O12 sheets is only ≈(6.6 ± 0.25) nm and the specific surface area of the sample is 178 m2 g?1. When applied into lithium ion batteries as anode materials, the hierarchical Li4Ti5O12 microspheres exhibit high specific capacities at high rates (156 mA h g?1 at 20 C, 150 mA h g?1 at 50 C) and maintain a capacity of 126 mA h g?1 after 3000 cycles at 20 C. The results clearly suggest that the utility of hierarchical structures based on ultrathin nanosheets can promote the lithium insertion/extraction reactions in Li4Ti5O12. The obtained hierarchical Li4Ti5O12 with ultrathin nanosheets and large specific surface area can be perfect anode materials for the lithium ion batteries applied in high power facilities, such as electric vehicles and hybrid electric vehicles.  相似文献   

18.
Owing to its high theoretical specific capacity (1166 mA h g?1) and particularly its advantage to be paired with a lithium‐metal‐free anode, lithium sulfide (Li2S) is regarded as a much safer cathode for next‐generation advanced lithium–sulfur (Li–S) batteries. However, the low conductivity of Li2S and particularly the severe “polysulfide shuttle” of lithium polysulfide (LiPS) dramatically hinder their practical application in Li–S batteries. To address such issues, herein a bifuctional 3D metal sulfide‐decorated carbon sponge (3DTSC), which is constructed by 1D carbon nanowires cross‐linked with 2D graphene nanosheets with high conductivity and polar 0D metal sulfide nanodots with efficient electrocatalytic activity and strong chemical adsorption capability for LiPSs, is presented. Benefiting from the well‐designed multiscale, multidimensional 3D porous nanoarchitecture with high conductivity, and efficient electrocatalytic and absorption ability, the 3DTSC significantly mitigates LiPS shuttle, improves the utilization of Li2S, and facilitates the transport of electrons and ions. As a result, even with a high Li2S loading of 8 mg cm?2, the freestanding 3DTSC‐Li2S cathode without a polymer binder and metallic current collector delivers outstanding electrochemical performance with a high areal capacity of 8.44 mA h cm?2.  相似文献   

19.
Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0.8Sr0.2MnO3?y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material. The LSM is Mn? O? M bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g?1 at 1 C (260 mA g?1) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g?1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries.  相似文献   

20.
Orthorhombic α‐MoO3 is a potential anode material for lithium‐ion batteries due to its high theoretical capacity of 1100 mAh g?1 and excellent structural stability. However, its intrinsic poor electronic conductivity and high volume expansion during the charge–discharge process impede it from achieving a high practical capacity. A novel composite of α‐MoO3 nanobelts and single‐walled carbon nanohorns (SWCNHs) is synthesized by a facile microwave hydrothermal technique and demonstrated as a high‐performance anode material for lithium‐ion batteries. The α‐MoO3/SWCNH composite displays superior electrochemical properties (654 mAh g?1 at 1 C), excellent rate capability (275 mAh g?1 at 5 C), and outstanding cycle life (capacity retention of >99% after 3000 cycles at 1 C) without any cracking of the electrode. The presence of SWCNHs in the composite enhances the electrochemical properties of α‐MoO3 by acting as a lithium storage material, electronic conductive medium, and buffer against pulverization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号