首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Resistance to dieldrin (Rdl) gene encodes a subunit of the insect γ‐aminobutyric acid (GABA) receptor. Cyclodiene resistance in many insects is associated with replacement of a single amino acid (alanine at position 302) with either a serine or a glycine in the Rdl gene. Two Rdl‐orthologous genes of GABA receptors (PxGABARα1 and PxGABARα2) were cloned and sequenced from a susceptible strain (Roth) of Plutella xylostella. PxGABARα1 and PxGABARα2 showed 84% and 77% identity with the Rdl gene of Drosophila melanogaster at an amino acid level, respectively. The coding regions of PxGABARα1 and PxGABARα2 both comprise ten exons, with two alternative RNA‐splicing forms in exon 3 of both genes. At the orthologous position of alanine‐302 in D. melanogaster Rdl, PxGABARα1 has a conserved alanine at position 282. PxGABARα2 has a serine instead of an alanine at the equivalent position. With two informative DNA markers, both PxGABARα1 and PxGABARα2 were mapped onto the Z chromosome of P. xylostella. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Meg9/Mirg (maternally expressed gene 9/microRNA containing gene), a non‐coding RNA (ncRNA) comprising many alternatively splicing isoforms, has been identified as maternally expressed in mouse and sheep, but its imprinting status and splicing variants are still unknown in cattle. In this study, we found three splicing variants of the cattle MEG9 gene expressed in a tissue‐specific manner. A single nucleotide polymorphism site (SNP c.1354C>G) was identified in exon 3 of cattle MEG9 and used to distinguish between monoallelic and biallelic expression. Our results showed that MEG9 exhibited monoallelic expression in all examined cattle tissues by comparing sequencing results between genomic DNA and cDNA levels at the c.1354C>G SNP site, suggesting that MEG9 is imprinted in cattle.  相似文献   

3.
Alternative splicing (AS) is a key regulatory mechanism for the development of different tissues; however, not much is known about changes to alternative splicing during aging. Splicing events may become more frequent and widespread genome‐wide as tissues age and the splicing machinery stringency decreases. Using skin, skeletal muscle, bone, thymus, and white adipose tissue from wild‐type C57BL6/J male mice (4 and 18 months old), we examined the effect of age on splicing by AS analysis of the differential exon usage of the genome. The results identified a considerable number of AS genes in skeletal muscle, thymus, bone, and white adipose tissue between the different age groups (ranging from 27 to 246 AS genes corresponding to 0.3–3.2% of the total number of genes analyzed). For skin, skeletal muscle, and bone, we included a later age group (28 months old) that showed that the number of alternatively spliced genes increased with age in all three tissues (< 0.01). Analysis of alternatively spliced genes across all tissues by gene ontology and pathway analysis identified 158 genes involved in RNA processing. Additional analysis of AS in a mouse model for the premature aging disease Hutchinson–Gilford progeria syndrome was performed. The results show that expression of the mutant protein, progerin, is associated with an impaired developmental splicing. As progerin accumulates, the number of genes with AS increases compared to in wild‐type skin. Our results indicate the existence of a mechanism for increased AS during aging in several tissues, emphasizing that AS has a more important role in the aging process than previously known.  相似文献   

4.
5.
6.
Serotonin (5‐HT)2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on 5‐HT release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5‐HT2C receptor‐induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5‐HT turnover by a 5‐HT2C receptor agonist (RO 60‐0175) at the hippocampal level and under conditions of stress, after pharmacological or genetic inactivation of either GABA‐A or GABA‐B receptors in mice. Neither the GABA‐B receptor antagonist phaclofen nor the specific genetic ablation of either GABA‐B1a or GABA‐B1b subunits altered the inhibitory effect of RO 60‐0175, although 5‐HT turnover was markedly decreased in GABA‐B1a knock‐out mice in both basal and stress conditions. In contrast, the 5‐HT2C receptor‐mediated inhibition of 5‐HT turnover was reduced by the GABA‐A receptor antagonist bicuculline. However, a significant effect of 5‐HT2C receptor activation persisted in mutant mice deficient in the α3 subunit of GABA‐A receptors. It can be inferred that non‐α3 subunit‐containing GABA‐A receptors, but not GABA‐B receptors, mediate the 5‐HT2C‐induced inhibition of stress‐induced increase in hippocampal 5‐HT turnover in mice.

  相似文献   


7.
The Eyguieres 42 strain of Drosophila simulans, obtained by laboratory selection, displayed approximately 20,000-fold resistance to the insecticide fipronil. Molecular cloning of the cDNA encoding the RDL GABA receptor subunit of this strain revealed the presence of two mutations: the Rdl mutation (A301G) and an additional mutation in the third transmembrane domain (T350M). In order to assess the individual and combined roles of the two mutations in fipronil resistance, the functional properties of wild-type, A301G, T350M and A301G/T350M homomultimeric RDL receptors were compared by expression in Xenopus oocytes. In wild-type receptors, the inhibition of GABA (EC(30))-induced currents by fipronil and picrotoxin was enhanced by repeated GABA applications. The A301G mutation nearly abolished this effect, decreased the sensitivity to fipronil and picrotoxin and increased the reversibility of inhibition. The T350M mutation also reduced the sensitivity to both antagonists. Of the four receptor variants tested, the double mutant showed the highest resistance to fipronil, following repeated GABA applications. In conclusion, the present study emphasizes new aspects of the pharmacological alterations induced by the Rdl mutation and shows that resistance to GABA receptor-directed insecticides may implicate a mutation distinct from Rdl.  相似文献   

8.
The major isoforms of GABA(A) receptors are thought to be composed of two alpha, two beta and one gamma subunit(s). GABA(A) receptors containing two beta1 subunits respond differently to the anticonvulsive compound loreclezole and the general anaesthetic etomidate than receptors containing two beta2 subunits. Receptors containing beta2 subunits show a much larger allosteric stimulation by these agents than those containing beta1 subunits. We were interested to know how receptors containing both beta1 and beta2 subunits, in different positions respond to loreclezole and etomidate. To answer this question, subunits were fused at the DNA level to form dimeric and trimeric subunits. Concatenated receptors (alpha1-beta1-alpha1/gamma2-beta1, alpha1-beta2-alpha1/gamma2-beta1, alpha1-beta1-alpha1/gamma2-beta2 and alpha1-beta2-alpha1/gamma2-beta2) were expressed in Xenopus ooctyes and functionally compared in their response to the agonist GABA and to the positive allosteric modulators, loreclezole and etomidate. We have shown that (I) in the presence of both beta1 and beta2 subunits in the same pentamer (mixed receptors) direct gating by etomidate is similar to exclusively beta1 containing receptors; (II) In mixed receptors, stimulation by etomidate assumed characteristics intermediate to exclusively beta1 or beta2 containing receptors, but the values for the concentrations < 10 microM were always much closer to those observed in alpha1-beta1-alpha1/gamma2-beta1 receptors; and (III) mixed receptors show no positional effects.  相似文献   

9.
10.
Gamma‐aminobutyric acid (GABA) is a non‐protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA‐transaminase, GABA‐T), we attempted seed‐specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB‐1) or rice embryo globulin promoters (REG) and GABA‐T‐based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T1 and T2 generations of rice lines displayed high GABA concentrations (2–100 mg/100 g grain). In analyses of two selected lines from the T3 generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA‐T expression was relatively weak. In these two lines both with two T‐DNA copies, their starch, amylose, and protein levels were slightly lower than non‐transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75–350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts.  相似文献   

11.
12.
The prevalence of aromatic residues in the ligand binding site of the GABAA receptor, as with other cys‐loop ligand‐gated ion channels, is undoubtedly important for the ability of neurotransmitters to bind and trigger channel opening. Here, we have examined three conserved tyrosine residues at the GABA binding pocket (β2Tyr97, β2Tyr157, and β2Tyr205), making mutations to alanine and phenylalanine. We fully characterized the effects each mutation had on receptor function using heterologous expression in HEK‐293 cells, which included examining surface expression, kinetics of macroscopic currents, microscopic binding and unbinding rates for an antagonist, and microscopic binding rates for an agonist. The assembly or trafficking of GABAA receptors was disrupted when tyrosine mutants were expressed as αβ receptors, but interestingly not when expressed as αβγ receptors. Mutation of each tyrosine accelerated deactivation and slowed GABA binding. This provides strong evidence that these residues influence the binding of GABA. Qualitatively, mutation of each tyrosine has a very similar effect on receptor function; however, mutations at β2Tyr157 and β2Tyr205 are more detrimental than β2Tyr97 mutations, particularly to the GABA binding rate. Overall, the results suggest that interactions involving multiple tyrosine residues are likely during the binding process.  相似文献   

13.
Two α subunits of the gabaa receptor in rat brain have been identified by molecular cloning. The deduced polypeptide sequences share major characteristics with other chemically gated ion channel proteins. One polypeptide represents the rat homologue of the α3 subunit previously cloned from bovine brain [14], while the other polypeptide is a yet unknown subunit, termed α5. When coexpressed with the β1 subunit in Xenopus oocytes the receptors containing the α5 subunit revealed a higher sensitivity to GABA than receptors expressed from α1 + β1 subunits or α3 + β1 subunits (Ka = 1 μM, 13 μM and 14 μM, respectively). The α5 subunit was expressed only in a few brain areas such as cerebral cortex, hippocampal formation and olfactory bulb granular layer as shown by in situ hybridization histochemistry. Since the mRNA of the α5 subunit was colocalized with the αl and α3 subunits only in cerebral cortex and in the hippocampal formation the α5 subunit may be part of distinct GABAA receptors in neuronal populations within the olfactory bulb.  相似文献   

14.
A nicotinic acetylcholine receptor (nAChR) subunit gene, Mdalpha2, was isolated and characterized from the house fly, Musca domestica. This is the first nAChR family member cloned from house flies. Mdalpha2 had a cDNA of 2,607 bp, which included a 696 bp 5'-untranslated region (UTR), an open reading frame of 1,692 bp, and a 219 bp 3'-UTR. Its deduced amino acid sequence possesses the typical characteristics of nAChRs. Mdalpha2 genomic sequence was 11.2 kb in length in the aabys strain and 10.9 kb in the OCR strain, including eight exons and seven introns. Based on the deduced amino acid sequence, Mdalpha2 had the closest phylogenetic relationship to the Drosophila melanogaster Dalpha2 and Anopheles gambiae Agamalpha2, and a similar genomic structure to Dalpha2. Quantitative real-time PCR analysis showed that Mdalpha2 is expressed in the head and the thorax at 150- and 8.5-fold higher levels than in the abdomen. Linkage analysis of a Mdalpha2 polymorphism indicates this gene is on autosome 2. The importance of these results in understanding the diversity and phylogenetic relationships of insect nAChRs, the physiology of nAChRs in the house fly, and the utility of nAChR sequences in resistance detection/monitoring is discussed.  相似文献   

15.
16.
Febrile seizures (FS) are the most common type of seizures in childhood and are suggested to play a role in the development of temporal lobe epilepsy (TLE). Animal studies demonstrated that experimental FS induce a long‐lasting change in hippocampal excitability, resulting in enhanced seizure susceptibility. Hippocampal neurogenesis and altered ion channel expression have both been proposed as mechanisms underlying this decreased seizure threshold. The present study aimed to analyze whether dentate gyrus (DG) cells that were born after FS and matured for 8 weeks display an altered repertoire of ligand‐gated ion channels. To this end, we applied an established model, in which FS are elicited in 10‐day‐old rat pups by hyperthermia (HT). Normothermia littermates served as controls. From postnatal day 11 (P11) to P16, rats were injected with bromodeoxyuridine (BrdU) to label dividing cells immediately following FS. At P66, we evaluated BrdU‐labeled DG cells for coexpression with γ‐aminobutyric acid‐type A receptors (GABAARs) and N‐methyl‐D ‐aspartate receptors (NMDARs). In control animals, 40% of BrdU‐labeled cells coexpressed GABAAR β2/3, whereas in rats that had experienced FS, 60% of BrdU‐labeled cells also expressed GABAAR β2/3. The number of BrdU‐NMDAR NR2A/B coexpressing cells was in both groups about 80% of BrdU‐labeled cells. The results demonstrate that developmental seizures cause a long‐term increase in GABAAR β2/3 expression in newborn DG cells. This may affect hippocampal physiology. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

17.
昆虫GABA受体(γ-aminobutyric acid receptor, GABAR)是杀虫剂的重要靶标之一。本研究以黑腹果蝇Drosophila melanogaster整体组织的cDNA作为模板, 采用RT-PCR技术扩增了黑腹果蝇GABA受体LCCH3亚基和GRD亚基的cDNA序列, 并克隆至pET-32a表达载体上, 测序结果表明获得的序列与基因库中已发表的序列一致性在99%以上, 无移码突变。在IPTG的诱导下, LCCH3基因成功在大肠杆菌Escherichia coli中表达, 而GRD基因未表达。通过包涵体洗涤、变性、Ni2+亲合层析纯化、稀释复性获得纯化的重组表达的LCCH3蛋白, 并用圆二色谱测定了目标蛋白的二级结构, 主要富含β结构。该研究结果为研究昆虫GABAR的结构和功能关系提供了重要的参考数据。  相似文献   

18.
19.
20.
Cl(-) transport is essential for lung development. Because gamma-aminobutyric acid (GABA) receptors allow the flow of negatively-charged Cl(-) ions across the cell membrane, we hypothesized that the expression of ionotropic GABA receptors are regulated in the lungs during development. We identified 17 GABA receptor subunits in the lungs by real-time PCR. These subunits were categorized into four groups: Group 1 had high mRNA expression during fetal stages and low in adults; Group 2 had steady expression to adult stages with a slight up-regulation at birth; Group 3 showed an increasing expression from fetal to adult lungs; and Group 4 displayed irregular mRNA fluctuations. The protein levels of selected subunits were also determined by Western blots and some subunits had protein levels that corresponded to mRNA levels. Further studied subunits were primarily localized in epithelial cells in the developing lung with differential mRNA expression between isolated cells and whole lung tissues. Our results add to the knowledge of GABA receptor expression in the lung during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号