首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Earth‐abundant Sn/Cu catalysts are highly selective for the electrocatalytic reduction of CO2 to CO in aqueous electrolytes. However, CO2 mass transport limitations, resulting from the low solubility of CO2 in water, so far limit the CO partial current density for Sn/Cu catalysts to about 10 mA cm?2. Here, a freestanding gas diffusion electrode design based on Sn‐decorated Cu‐coated electrospun polyvinylidene fluoride nanofibers is demonstrated. The use of gaseous CO2 as a feedstock alleviates mass transport limitations, resulting in high CO partial current densities above 100 mA cm?2, while maintaining high CO faradaic efficiencies above 80%. These results represent an important step toward an economically viable pathway to CO2 reduction.  相似文献   

2.
Electrochemical reduction of carbon dioxide (CO2) to fuels and value‐added industrial chemicals is a promising strategy for keeping a healthy balance between energy supply and net carbon emissions. Here, the facile transformation of residual Ni particle catalysts in carbon nanotubes into thermally stable single Ni atoms with a possible NiN3 moiety is reported, surrounded with a porous N‐doped carbon sheath through a one‐step nanoconfined pyrolysis strategy. These structural changes are confirmed by X‐ray absorption fine structure analysis and density functional theory (DFT) calculations. The dispersed Ni single atoms facilitate highly efficient electrocatalytic CO2 reduction at low overpotentials to yield CO, providing a CO faradaic efficiency exceeding 90%, turnover frequency approaching 12 000 h?1, and metal mass activity reaching about 10 600 mA mg?1, outperforming current state‐of‐the‐art single atom catalysts for CO2 reduction to CO. DFT calculations suggest that the Ni@N3 (pyrrolic) site favors *COOH formation with lower free energy than Ni@N4, in addition to exothermic CO desorption, hence enhancing electrocatalytic CO2 conversion. This finding provides a simple, scalable, and promising route for the preparation of low‐cost, abundant, and highly active single atom catalysts, benefiting future practical CO2 electrolysis.  相似文献   

3.
Electrochemical CO2 reduction reaction (CO2RR) provides a potential pathway to mitigate challenges related to CO2 emissions. Pd nanoparticles have shown interesting properties as CO2RR electrocatalysts, while how different facets of Pd affect its performance in CO2 reduction to synthesis gas with controlled H2 to CO ratios has not been understood. Herein, nanosized Pd cubes and octahedra particles dominated by Pd(100) and Pd(111) facets are, respectively, synthesized. The Pd octahedra particles show higher CO selectivity (up to 95%) and better activity than Pd cubes and commercial particles. For both Pd octahedra and cubes, the ratio of H2/CO products is tunable between 1 and 2, a desirable ratio for methanol synthesis and the Fischer–Tropsch processes. Further studies of Pd octahedra in a 25 cm2 flow cell show that a total CO current of 5.47 A is achieved at a potential of 3.4 V, corresponding to a CO partial current density of 220 mA cm?2. In situ X‐ray absorption spectroscopy studies show that regardless of facet Pd is transformed into Pd hydride (PdH) under reaction conditions. Density functional theory calculations show that the reduced binding energies of CO and HOCO intermediates on PdH(111) are key parameters to the high current density and Faradaic efficiency in CO2 to CO conversion.  相似文献   

4.
Efficient and selective earth‐abundant catalysts are highly desirable to drive the electrochemical conversion of CO2 into value‐added chemicals. In this work, a low‐cost Sn modified N‐doped carbon nanofiber hybrid catalyst is developed for switchable CO2 electroreduction in aqueous medium via a straightforward electrospinning technique coupled with a pyrolysis process. The electrocatalytic performance can be tuned by the structure of Sn species on the N‐doped carbon nanofibers. Sn nanoparticles drive efficient formate formation with a high current density of 11 mA cm?2 and a faradaic efficiency of 62% at a moderate overpotential of 690 mV. Atomically dispersed Sn species promote conversion of CO2 to CO with a high faradaic efficiency of 91% at a low overpotential of 490 mV. The interaction between Sn species and pyridinic‐N may play an important role in tuning the catalytic activity and selectivity of these two materials.  相似文献   

5.
Electrochemical reduction of CO2 provides an opportunity to reach a carbon‐neutral energy recycling regime, in which CO2 emissions from fuel use are collected and converted back to fuels. The reduction of CO2 to CO is the first step toward the synthesis of more complex carbon‐based fuels and chemicals. Therefore, understanding this step is crucial for the development of high‐performance electrocatalyst for CO2 conversion to higher order products such as hydrocarbons. Here, atomic iron dispersed on nitrogen‐doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO2 reduction to CO. Fe/NG has a low reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen‐confined atomic Fe moieties on the nitrogen‐doped graphene layer is confirmed by aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. The CO2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N4) embedded in nitrogen‐doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.  相似文献   

6.
Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hybrid Bi/Bi? O interface (Bi NSs) is developed, which enables CO2 reduction to formic acid (HCOOH) with high activity, selectivity, and stability. Specially, the flow cell configuration is employed to eliminate the diffusion effect of CO2 molecules and simultaneously achieve considerable current density (200 mA cm?2) for industrial application. The faradaic efficiency for transforming CO2 to HCOOH can achieve over 85 or 90% in 1 m KHCO3 or KOH for at least 10 h despite a current density that exceeds 200 mA cm?2, outperforming most of the reported CO2 electroreduction catalysts. The hybrid Bi/Bi? O surface of leafy bismuth nanosheets boosts the adsorption of CO2 and protects the surface structure of the as‐prepared leafy bismuth nanosheets, which benefits its activity and stability for CO2 electroreduction. This work shows that modifying electrocatalysts by surface oxygen groups is a promising pathway to regulate the activity and stability for selective CO2 reduction to HCOOH.  相似文献   

7.
Developing immobilized molecular complexes, which demonstrate high product efficiencies at low overpotential in the electrochemical reduction of CO2 in aqueous media, is essential for the practical production of reduction products. In this work, a simple and facile self‐assembly method is demonstrated by electrostatic interaction and π–π stacking for the fabrication of a porphyrin/graphene framework (FePGF) composed of Fe(III) tetraphenyltrimethylammonium porphyrin and reduced liquid crystalline graphene oxide that can be utilized for the electrocatalytic reduction of CO2 to CO on a glassy carbon electrode in aqueous electrolyte. The FePGF results in an outstanding robust catalytic performance for the production of CO with 97.0% faradaic efficiency at an overpotential of 480 mV and superior long‐term stability relative to other heterogeneous molecular complexes of over 24 h (cathodic energy efficiency: 58.1%). In addition, a high surface area carbon fiber paper is used as a substrate for FePGF catalyst, resulting in enhanced current density of 1.68 mA cm?2 with 98.7% CO faradaic efficiency at an overpotential of 430 mV for 10 h, corresponding to a turnover frequency of 2.9 s?1 and 104 400 turnover number. Furthermore, FePGF/CFP has one of the highest cathodic energy efficiencies (60.9%) reported for immobilized metal complex catalysts.  相似文献   

8.
Z‐scheme‐inspired tandem photoelectrochemical (PEC) cells have received attention as a sustainable platform for solar‐driven CO2 reduction. Here, continuously 3D‐structured, electrically conductive titanium nitride nanoshells (3D TiN) for biocatalytic CO2‐to‐formate conversion in a bias‐free tandem PEC system are reported. The 3D TiN exhibits a periodically porous network with high porosity (92.1%) and conductivity (6.72 × 104 S m?1), which allows for high enzyme loading and direct electron transfer (DET) to the immobilized enzyme. It is found that the W‐containing formate dehydrogenase from Clostridium ljungdahlii (ClFDH) on the 3D TiN nanoshell is electrically activated through DET for CO2 reduction. At a low overpotential of 40 mV, the 3D TiN‐ClFDH stably converts CO2 to formate at a rate of 0.34 µmol h?1 cm?2 and a faradaic efficiency (FE) of 93.5%. Compared to a flat TiN‐ClFDH, the 3D TiN‐ClFDH shows a 58 times higher formate production rate (1.74 µmol h?1 cm?2) at 240 mV of overpotential. Lastly, a bias‐free biocatalytic tandem PEC cell that converted CO2 to formate at an average rate of 0.78 µmol h?1 and an FE of 77.3% only using solar energy and water is successfully assembled.  相似文献   

9.
The challenge in the artificial CO2 reduction to fuel is achieving high selective electrocatalysts. Here, a highly selective Cu2O/CuO heterostructure electrocatalyst is developed for CO2 electroreduction. The Cu2O/CuO nanowires modified by Ni nanoparticles exhibit superior catalytic performance with high faradic efficiency (95% for CO). Theoretical and experimental analyses show that the hybridization of Cu2O/CuO nanowires and Ni nanoparticles can not only adjust the d‐band center of electrocatalysts to enhance the intrinsic catalytic activity but also improve the adsorption of COOH* intermediates and suppress the hydrogen evolution reaction to promote the CO conversion efficiency during CO2 reduction reaction. An in situ Raman spectroscopic study further confirms the existence of COOH* species and the engineering intermediates adsorption. This work offers new insights for facile designing of nonprecious transition metal compound heterostructure for CO2 reduction reaction through adjusting the reaction pathway.  相似文献   

10.
Various additives to Ni–Fe systems are studied as cermet cathodes for CO2 electrolysis (973–1173 K) using a La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte, which is one of the most promising oxide‐ion conductors for intermediate‐temperature solid‐oxide electrolysis cells in terms of ionic‐transport number and conductivity. It is found that Ni–Fe–La0.6Sr0.4Fe0.8Mn0.2O3 (Ni–Fe–LSFM) exhibits a remarkable performance with a current density of 2.32 A cm?2 at 1.6 V and 1073 K. The cathodic overpotential is significantly decreased by mixing the LSFM powder with Ni–Fe, which is related to the increase in the number of reaction sites for CO2 reduction. For Ni–Fe–LSFM, much smaller particles (<200 nm) are sustained under CO2 electrolysis conditions at high temperatures than for Ni–Fe. X‐ray diffraction analysis suggests that the main phases of Ni–Fe–LSFM are Ni and LaFeO3; thus, the oxide phase of LaFeO3 is also maintained during CO2 electrolysis. Analysis of the gaseous products indicates that only CO is formed, and the rate of CO formation agrees well with that of a four‐electron reduction process, suggesting that the reduction of CO2 to CO proceeds selectively. It is also confirmed that almost no coke is deposited on the Ni–Fe–LSFM cathode after CO2 electrolysis.  相似文献   

11.
The mixtures of room temperature ionic liquid 1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate ([EMIM]TFO) and water as electrolytes for reduction of CO2 to CO are reported. Linear sweep voltammetry shows overpotentials for CO2 reduction and the competing hydrogen evolution reaction (HER), both of which vary as a function of [EMIM]TFO concentration in the range from 4 × 10?3m (0.006 mol%) to 4869 × 10?3m (50 mol%). A steady lowering of overpotentials up to an optimum for 334 × 10?3m is identified. At 20 mol% and more of [EMIM]TFO, a significant CO2 reduction plateau and inhibition of HER, which is limited by H2O diffusion, is noted. Such a plateau in CO2 reduction correlates to high CO Faraday efficiencies. In case of 50 mol% [EMIM]TFO, a broad plateau spanning over a potential range of 0.58 V evolves. At the same time, the overpotential for HER is increased by 1.20 V when compared to 334 × 10?3m and, in turn, HER is largely inhibited. The Faraday efficiencies for CO and H2 formation feature 95.6% ± 6.8% and 0.5% ± 0.3%, respectively, over a period of 3 h in a separator divided cell. Cathodic as well as anodic electrochemical stability of the electrolyte throughout this time period is corroborated in 1H NMR spectroscopic measurements.  相似文献   

12.
Electrochemical CO2 reduction (CO2RR) is a promising technology to produce value‐added fuels and weaken the greenhouse effect. Plenty of efforts are devoted to exploring high‐efficiency electrocatalysts to tackle the issues that show poor intrinsic activity, low selectivity for target products, and short‐lived durability. Herein, density functional theory calculations are firstly utilized to demonstrate guidelines for design principles of electrocatalyst, maximum exposure of catalytic active sites for MoS2 edges, and electron transfer from N‐doped carbon (NC) to MoS2 edges. Based on the guidelines, a hierarchical hollow electrocatalyst comprised of edge‐exposed 2H MoS2 hybridized with NC for CO2RR is constructed. In situ atomic‐scale observation for catalyst growth is performed by using a specialized Si/SiNx nanochip at a continuous temperature‐rise period, which reveals the growth mechanism. Abundant exposed edges of MoS2 provide a large quantity of active centers, which leads to a low onset potential of ≈40 mV and a remarkable CO production rate of 34.31 mA cm?2 with 92.68% of Faradaic efficiency at an overpotential of 590 mV. The long‐term stability shows negligible degradation for more than 24 h. This work provides fascinating insights into the construction of catalysts for efficient CO2RR.  相似文献   

13.
An Si photoelectrode with a nanoporous Au thin film for highly selective and efficient photoelectrochemical (PEC) CO2 reduction reaction (CO2RR) is presented. The nanoporous Au thin film is formed by electrochemical reduction of an anodized Au thin film. The electrochemical treatments of the Au thin film critically improve CO2 reduction catalytic activity of Au catalysts and exhibit CO Faradaic efficiency of 96% at 480 mV of overpotential. To apply the electrochemical pretreatment of Au films for PEC CO2RR, a new Si photoelectrode design with mesh‐type co‐catalysts independently wired at the front and the back of the photoelectrode is demonstrated. Due to the superior CO2RR activity of the nanoporous Au mesh and high photovoltage from Si, the Si photoelectrode with the nanoporous Au thin film mesh shows conversion of CO2 to CO with 91% Faradaic efficiency at positive potential than the CO2/CO equilibrium potential.  相似文献   

14.
In this study, scalable, flame spray synthesis is utilized to develop defective ZnO nanomaterials for the concurrent generation of H2 and CO during electrochemical CO2 reduction reactions (CO2RR). The designed ZnO achieves an H2/CO ratio of ≈1 with a large current density (j) of 40 mA cm?2 during long‐term continuous reaction at a cell voltage of 2.6 V. Through in situ atomic pair distribution function analysis, the remarkable stability of these ZnO structures is explored, addressing the knowledge gap in understanding the dynamics of oxide catalysts during CO2RR. Through optimization of synthesis conditions, ZnO facets are modulated which are shown to affect reaction selectivity, in agreement with theoretical calculations. These findings and insights on synthetic manipulation of active sites in defective metal‐oxides can be used as guidelines to develop active catalysts for syngas production for renewable power‐to‐X to generate a range of fuels and chemicals.  相似文献   

15.
Catalytic CO2 reforming of CH4 (CRM) to produce syngas (H2 and CO) provides a promising approach to reducing global CO2 emissions and the extensive utilization of natural gas resources. However, the rapid deactivation of the reported catalysts due to severe carbon deposition at high reaction temperatures and the large energy consumption of the process hinder its industrial application. Here, a method for almost completely preventing carbon deposition is reported by modifying the surface of Ni nanocrystals with silica clusters. The obtained catalyst exhibits excellent durability for CRM with almost no carbon deposition and deactivation after reaction for 700 h. Very importantly, it is found that CRM on the catalyst can be driven by focused solar light, thus providing a promising new approach to the conversion of renewable solar energy to fuel due to the highly endothermic characteristics of CRM. The reaction yields high production rates of H2 and CO (17.1 and 19.9 mmol min?1 g?1, respectively) with a very high solar‐to‐fuel efficiency (η, 12.5%). Even under focused IR irradiation with a wavelength above 830 nm, the η of the catalyst remains as high as 3.1%. The highly efficient catalytic activity arises from the efficient solar‐light‐driven thermocatalytic CRM enhanced by a novel photoactivation effect.  相似文献   

16.
Renewable-electricity-powered electrochemical CO2 reduction (CO2RR) is considered one of the most promising ways to convert exhaust CO2 into value-added chemicals and fuels. Among various CO2RR products, CO is of great significance since it can be directly used as feedstock to produce chemical products through the Fischer–Tropsch process. However, the CO2-to-CO electrocatalytic process is often accompanied by a kinetically competing side reaction: H2 evolution reaction (HER). Designing electrocatalysts with tunable electronic structures is an attractive strategy to enhance CO selectivity. In this work, a CeNCl-CeO2 heterojunction-modified Ni catalyst is successfully synthesized with high CO2RR catalytic performance by the impregnation-calcination method. Benefiting from the strong electron interaction between the CeNCl-CeO2 heterojunction and Ni nanoparticles (NPs), the catalytic performance is greatly improved. Maximal CO Faradaic efficiency (FE) is up to 90% at −0.8 V (vs RHE), plus good stability close to 12 h. Detailed electrochemical tests and density functional theory (DFT) calculation results reveal that the introduction of the CeNCl-CeO2 heterojunction tunes the electronic structure of Ni NPs. The positively charged Ni center leads to an enhanced local electronic structure, thus promoting the activation of CO2 and the adsorption of *COOH.  相似文献   

17.
A general understanding of the links between atmospheric CO2 concentration and the functioning of the terrestrial biosphere requires not only an understanding of plant trait responses to the ongoing transition to higher CO2 but also the legacy effects of past low CO2. An interesting question is whether the transition from current to higher CO2 can be thought of as a continuation of the past trajectory of low to current CO2 levels. Determining this trajectory requires quantifying the effect sizes of plant response to low CO2. We performed a meta‐analysis of low CO2 growth experiments on 34 studies with 54 species. We quantified how plant traits vary at reduced CO2 levels and whether C3 versus C4 and woody versus herbaceous plant species respond differently. At low CO2, plant functioning changed drastically: on average across all species, a 50% reduction in current atmospheric CO2 reduced net photosynthesis by 38%; increased stomatal conductance by 60% and decreased intrinsic water use efficiency by 48%. Total plant dry biomass decreased by 47%, while specific leaf area increased by 17%. Plant types responded similarly: the only significant differences being no increase in SLA for C4 species and a 16% smaller decrease in biomass for woody C3 species at glacial CO2. Quantitative comparison of low CO2 effect sizes to those from high CO2 studies showed that the magnitude of response of stomatal conductance, water use efficiency and SLA to increased CO2 can be thought of as continued shifts along the same line. However, net photosynthesis and dry weight responses to low CO2 were greater in magnitude than to high CO2. Understanding the causes for this discrepancy can lead to a general understanding of the links between atmospheric CO2 and plant responses with relevance for both the past and the future.  相似文献   

18.
Engineering electronic structure to enhance the binding energies of reaction intermediates in order to achieve a high partial current density can lead to increased yield of target products. Herein, amino‐functionalized carbon is used to regulate the electronic structure of tin‐based catalysts to enhance activity of CO2 electroreduction. The hollow nanotubes composed of SnS (stannous sulfide) nanosheets are modified with amino‐functionalized carbon layers, achieving a highest formate Faraday efficiency of 92.6% and a remarkable formate partial current density of 41.1 mA cm?2 (a total current density of 52.1 mA cm?2) at a moderate overpotential of 0.9 V versus reversible hydrogen electrode, as well as a good stability. Density functional theory calculations demonstrate that the superior activity is attributed to the synergistic effect among SnS and Aminated‐C in increasing the adsorption energies of the key intermediates and accelerating the charge transfer rate.  相似文献   

19.
Conversion of CO2 to energy‐rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar‐driven CO2 reduction process based on earth‐abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO2 saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH ≈ 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO2 to CO with solar‐to‐fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS2 cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost‐effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.  相似文献   

20.
Photocatalytic CO2 reduction is an effective means to generate renewable energy. It involves redox reactions, reduction of CO2 and oxidation of water, that leads to the production of solar fuel. Significant research effort has therefore been made to develop inexpensive and practically sustainable semiconductor‐based photocatalysts. The exploration of atomic‐level active sites on the surface of semiconductors can result in an improved understanding of the mechanism of CO2 photoreduction. This can be applied to the design and synthesis of efficient photocatalysts. In this review, atomic‐level reactive sites are classified into four types: vacancies, single atoms, surface functional groups, and frustrated Lewis pairs (FLPs). These different photocatalytic reactive sites are shown to have varied affinity to reactants, intermediates, and products. This changes pathways for CO2 reduction and significantly impacts catalytic activity and selectivity. The design of a photocatalyst from an atomic‐level perspective can therefore be used to maximize atomic utilization efficiency and lead to a high selectivity. The prospects for fabrication of effective photocatalysts based on an in‐depth understanding are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号