首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Layered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials.  相似文献   

2.
Herein, the successful synthesis of MnPO4‐coated LiNi0.4Co0.2Mn0.4O2 (MP‐NCM) as a lithium battery cathode material is reported. The MnPO4 coating acts as an ideal protective layer, physically preventing the contact between the NCM active material and the electrolyte and, thus, stabilizing the electrode/electrolyte interface and preventing detrimental side reactions. Additionally, the coating enhances the lithium de‐/intercalation kinetics in terms of the apparent lithium‐ion diffusion coefficient. As a result, MP‐NCM‐based electrodes reveal greatly enhanced C‐rate capability and cycling stability—even under exertive conditions like extended operational potential windows, elevated temperature, and higher active material mass loadings. This superior electrochemical behavior of MP‐NCM compared to as‐synthesized NCM is attributed to the superior stability of the electrode/electrolyte interface and structural integrity when applying a MnPO4 coating. Employing an ionic liquid as an alternative, intrinsically safer electrolyte system allows for outstanding cycling stabilities in a lithium‐metal battery configuration with a capacity retention of well above 85% after 2000 cycles. Similarly, the implementation in a lithium‐ion cell including a graphite anode provides stable cycling for more than 2000 cycles and an energy and power density of, respectively, 376 Wh kg?1 and 1841 W kg?1 on the active material level.  相似文献   

3.
One of the major hurdles of Ni‐rich cathode materials Li1+x(NixCozMnz)wO2, y > 0.5 for lithium‐ion batteries is their low cycling stability especially for compositions with Ni ≥ 60%, which suffer from severe capacity fading and impedance increase during cycling at elevated temperatures (e.g., 45 °C). Two promising surface and structural modifications of these materials to alleviate the above drawback are (1) coatings by electrochemically inert inorganic compounds (e.g., ZrO2) or (2) lattice doping by cations like Zr4+, Al3+, Mg2+, etc. This paper demonstrates the enhanced electrochemical behavior of Ni‐rich material LiNi0.8Co0.1Mn0.1O2 (NCM811) coated with a thin ZrO2 layer. The coating is produced by an easy and scalable wet chemical approach followed by annealing the material at ≥700 °C under oxygen that results in Zr doping. It is established that some ZrO2 remains even after annealing at ≥800 °C as a surface layer on NCM811. The main finding of this work is the enhanced cycling stability and lower impedance of the coated/doped NCM811 that can be attributed to a synergetic effect of the ZrO2 coating in combination with a zirconium doping.  相似文献   

4.
Ionogels are considered promising electrolytes for safe lithium‐ion batteries (LIBs) because of their low flammability, good thermal stability, and wide electrochemical stability window. Conventional ionic liquid‐based ionogels, however, face two main challenges; poor mechanical property and low Li‐ion transfer number. In this work, a novel solvate ionogel electrolyte (SIGE) based on an organic–inorganic double network (DN) is designed and fabricated through nonhydrolytic sol–gel reaction and in situ polymerization processes. The unprecedented SIGE possesses high toughness (bearing the deformation under the pressure of 80 MPa without damage), high Li‐ion transfer number of 0.43, and excellent Li‐metal compatibility. As expected, the LiFePO4/Li cell using the newly developed SIGE delivers a high capacity retention of 95.2% over 500 cycles, and the average Coulombic efficiency is as high as 99.8%. Moreover, the Ni‐rich LiNi0.8Co0.1Mn0.1O2 (NCM811)/Li cell based on the modified SIGE achieves a high Coulombic efficiency of 99.4%, which outperforms previous solid/quasi‐solid‐state NCM811‐based LIBs. Interestingly, the SIGE‐based pouch cells are workable under extreme conditions (e.g., severely deforming or clipping into segments). In terms of those unusual features, the as‐obtained SIGE holds great promise for next‐generation flexible and safe energy‐storage devices.  相似文献   

5.
Li[Ni0.9Co0.1]O2 (NC90), Li[Ni0.9Co0.05Mn0.05]O2 (NCM90), and Li[Ni0.9Mn0.1]O2 (NM90) cathodes are synthesized for the development of a Co‐free high‐energy‐density cathode. NM90 maintains better cycling stability than the two Co‐containing cathodes, particularly under harsh cycling conditions (a discharge capacity of 236 mAh g?1 with a capacity retention of 88% when cycled at 4.4 V under 30 °C and 93% retention when cycled at 4.3 V under 60 °C after 100 cycles). The reason for the enhanced stability is mainly the ability of NM90 to absorb the strain associated with the abrupt anisotropic lattice contraction/extraction and to suppress the formation of microcracks, in addition to enhanced chemical stability from the increased presence of stable Mn4+. Although the absence of Co deteriorates the rate capability, this can be overcome as the rate capability of the NM90 approaches that of the NCM90 when cycled at 60 °C. The long‐term cycling stability of NM90 is confirmed in a full cell, demonstrating that it is one of the most promising Co‐free cathodes for high‐energy‐density applications. This study not only provides insight into redefining the role of Mn in a Ni‐rich cathode, it also represents a clear breakthrough in achieving a commercially viable Co‐free Ni‐rich layered cathode.  相似文献   

6.
The application of lithium (Li) metal anodes in Li metal batteries has been hindered by growth of Li dendrites, which lead to short cycling life. Here a Li‐ion‐affinity leaky film as a protection layer is reported to promote a dendrite‐free Li metal anode. The leaky film induces electrokinetic phenomena to enhance Li‐ion transport, leading to a reduced Li‐ion concentration polarization and homogeneous Li‐ion distribution. As a result, the dendrite‐free Li metal anode during Li plating/stripping is demonstrated even at an extremely high deposition capacity (6 mAh cm?2) and current density (40 mA cm?2) with improved Coulombic efficiencies. A full cell battery with the leaky‐film protected Li metal as the anode and high‐areal‐capacity LiNi0.8Co0.1Mn0.1O2 (NCM‐811) (≈4.2 mAh cm?2) or LiFePO4 (≈3.8 mAh cm?2) as the cathode shows improved cycling stability and capacity retention, even at lean electrolyte conditions.  相似文献   

7.
LiNixMnyCo1?x?yO2 (NMC) cathode materials with Ni ≥ 0.8 have attracted great interest for high energy‐density lithium‐ion batteries (LIBs) but their practical applications under high charge voltages (e.g., 4.4 V and above) still face significant challenges due to severe capacity fading by the unstable cathode/electrolyte interface. Here, an advanced electrolyte is developed that has a high oxidation potential over 4.9 V and enables NMC811‐based LIBs to achieve excellent cycling stability in 2.5–4.4 V at room temperature and 60 °C, good rate capabilities under fast charging and discharging up to 3C rate (1C = 2.8 mA cm?2), and superior low‐temperature discharge performance down to ?30 °C with a capacity retention of 85.6% at C/5 rate. It is also demonstrated that the electrode/electrolyte interfaces, not the electrolyte conductivity and viscosity, govern the LIB performance. This work sheds light on a very promising strategy to develop new electrolytes for fast‐charging high‐energy LIBs in a wide‐temperature range.  相似文献   

8.
High‐performance rechargeable all‐solid‐state lithium metal batteries with high energy density and enhanced safety are attractive for applications like portable electronic devices and electric vehicles. Among the various solid electrolytes, argyrodite Li6PS5Cl with high ionic conductivity and easy processability is of great interest. However, the low interface compatibility between sulfide solid electrolytes and high capacity cathodes like nickel‐rich layered oxides requires many thorny issues to be resolved, such as the space charge layer (SCL) and interfacial reactions. In this work, in situ electrochemical impedance spectroscopy and in situ Raman spectroscopy measurements are performed to monitor the detailed interface evolutions in a LiNi0.8Co0.1Mn0.1O2 (NCM)/Li6PS5Cl/Li cell. Combining with ex situ characterizations including scanning electron microscopy and X‐ray photoelectron spectroscopy, the evolution of the SCL and the chemical bond vibration at NCM/Li6PS5Cl interface during the early cycles is elaborated. It is found that the Li+ ion migration, which varies with the potential change, is a very significant cause of these interface behaviors. For the long‐term cycling, the SCL, interfacial reactions, lithium dendrites, and chemo‐mechanical failure have an integrated effect on interfaces, further deteriorating the interfacial structure and electrochemical performance. This research provides a new insight on intra and intercycle interfacial evolution of solid‐state batteries.  相似文献   

9.
The development of all‐solid‐state lithium–sulfur batteries is hindered by the poor interfacial properties at solid electrolyte (SE)/electrode interfaces. The interface is modified by employing the highly concentrated solvate electrolyte, (MeCN)2?LiTFSI:TTE, as an interlayer material at the electrolyte/electrode interfaces. The incorporation of an interlayer significantly improves the cycling performance of solid‐state Li2S batteries compared to the bare counterpart, exhibiting a specific capacity of 760 mAh g?1 at cycle 100 (330 mAh g?1 for the bare cell). Electrochemical impedance spectroscopy shows that the interfacial resistance of the interlayer‐modified cell gradually decreases as a function of cycle number, while the impedance of the bare cell remains almost constant. Cross‐section scanning electron microscopy (SEM)/ energy dispersive X‐ray spectroscopy (EDS) measurements on the interlayer‐modified cell confirm the permeation of solvate into the cathode and the SE with electrochemical cycling, which is related to the decrease in cell impedance. In order to mimic the full permeation of the solvate across the entire cell, the solvate is directly mixed with the SE to form a “solvSEM” electrolyte. The hybrid Li2S cell using a solvSEM electrolyte exhibits superior cycling performance compared to the solid‐state cells, in terms of Li2S loading, Li2S utilization, and cycling stability. The improved performance is due to the favorable ionic contact at the battery interfaces.  相似文献   

10.
Ni‐rich Li[NixCoyMn1?x?y]O2 (x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity of over 200 mAh g?1. Unfortunately, the anisotropic properties associated with the α‐NaFeO2 structured crystal grains result in poor rate capability and insufficient cycle life. To address these issues, a micrometer‐sized Ni‐rich LiNi0.8Co0.1Mn0.1O2 secondary cathode material consisting of radially aligned single‐crystal primary particles is proposed and synthesized. Concomitant with this unique crystallographic texture, all the exposed surfaces are active {010} facets, and 3D Li+ ion diffusion channels penetrate straightforwardly from surface to center, remarkably improving the Li+ diffusion coefficient. Moreover, coordinated charge–discharge volume change upon cycling is achieved by the consistent crystal orientation, significantly alleviating the volume‐change‐induced intergrain stress. Accordingly, this material delivers superior reversible capacity (203.4 mAh g?1 at 3.0–4.3 V) and rate capability (152.7 mAh g?1 at a current density of 1000 mA g?1). Further, this structure demonstrates excellent cycling stability without any degradation after 300 cycles. The anisotropic morphology modulation provides a simple, efficient, and scalable way to boost the performance and applicability of Ni‐rich layered oxide cathode materials.  相似文献   

11.
An integrated preparation of a low‐cost composite gel–polymer/glass–fiber electrolyte with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) reinforced by a glass–fiber paper and modified by a polydopamine coating to tune the mechanical and surface properties of PVDF‐HFP is shown to be applicable to a sodium‐ion battery. The composite polymer matrix exhibits excellent mechanical strength and thermal stability up to 200 °C. After saturating with a liquid electrolyte, a wide electrochemical window and high ionic conductivity is obtained for the composite gel–polymer/glass–fiber electrolyte. When tested in a sodium‐ion battery with Na2MnFe(CN)6 as cathode, the rate capability, cycling performance, and coulombic efficiency are significantly improved. The results suggest that the composite polymer electrolyte is a very attractive separator for a large‐scale battery system where safety and cost are the main concerns.  相似文献   

12.
Poor cycling stability is one of the key scientific issues needing to be solved for Li‐ and Mn‐rich layered oxide cathode. In this paper, sodium carboxymethyl cellulose (CMC) is first used as a novel binder in Li1.2Ni0.13Co0.13Mn0.54O2 cathode to enhance its cycling stability. Electrochemical performance is conducted by galvanostatic charge and discharge. Structure and morphology are characterized by X‐ray diffraction, scanning electronic microscopy, high‐resolution transmission electron microscopy, and X‐ray photoelectron spectroscopy. Results reveal that the CMC as binder can not only stabilize the electrode structure by preventing the electrode materials to detach from the current collector but also suppress the voltage fading of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode due to Na+ ions doping. Most importantly, the dissolution of metal elements from the cathode materials into the electrolyte is also inhibited.  相似文献   

13.
In lithium‐sulfur batteries, small S2–4 molecules show very different electrochemical responses from the traditional S8 material. Their exact lithiation/delitiation mechanism is not clear and how to select proper electrolytes for the S2–4 cathodes is also ambiguous. Here, S2–4 and S8/S2–4 composites with highly ordered microporous carbon as a confining matrix are fabricated and the electrode mechanism of the S2–4 cathode is investigated by comparing the electrochemical performances of the S2–4 and S2–4/S8 electrodes in various electrolytes combined with theoretical calculation. Experimental results show that the electrolyte and microstructure of carbon matrix play important roles in the electrochemical performance. If the micropores of carbon are small enough to prevent the penetration of the solvent molecules, the lithiation/delithiation for S2–4 occurs as a solid‐solid process. The irreversible chemically reactions between the polysulfudes and carbonates, and the dissolution of the polysulfides into the ethers can be effectively avoided due to the steric hindrance. The confined S2–4 show high adaptability to the electrolytes. The sulfur cathode based on this strategy exhibits excellent rate capability and cycling stability.  相似文献   

14.
As an alternative to commercial Ni‐ and Co‐based intercalation‐type cathode materials, conversion‐type metal fluoride (MFx) cathodes are attracting more interest due to their promises to increase cell‐level energy density when coupled with lithium (Li) or silicon (Si)‐based anodes. Among metal fluorides, iron fluorides (FeF2 and FeF3) are regarded as some of the most promising candidates due to their high capacity, moderately high potential and the very low cost of Fe. In this study, the impacts of electrolyte composition on the performance and stability of nanostructured FeF2 cathodes are systematically investigated. Dramatic impacts of Li salt composition, Li salt concentration, solvent composition, and cycling potential range on the cathode's most critical performance parameters—stability, capacity, rate, and voltage hysteresis are discovered. In contrast to previous beliefs, it is observed that even if the Fe2+ cation dissolution could be avoided, the dissolution of F? anions may still negatively affect cathode performance. Formation of the more favorable cathode solid electrolyte interface (CEI) is found to minimize both processes.  相似文献   

15.
Aqueous lithium/sodium‐ion batteries (AIBs) have received increasing attention because of their intrinsic safety. However, the narrow electrochemical stability window (1.23 V) of the aqueous electrolyte significantly hinders the development of AIBs, especially the choice of electrode materials. Here, an aqueous electrolyte composed of LiClO4, urea, and H2O, which allows the electrochemical stability window to be expanded to 3.0 V, is developed. Novel [Li (H2O)x(organic)y]+ primary solvation sheath structures are developed in this aqueous electrolyte, which contribute to the formation of solid–electrolyte interface layers on the surfaces of both the cathode and anode. The expanded electrochemical stability window enables the construction of full aqueous Li‐ion batteries with LiMn2O4 cathodes and Mo6S8 anodes, demonstrating an operating voltage of 2.1 V and stability over 2000 cycles. Furthermore, a symmetric aqueous Na‐ion battery using Na3V2(PO4)3 as both the cathode and anode exhibits operating voltage of 1.7 V and stability over 1000 cycles at a rate of 5 C.  相似文献   

16.
The insulating nature of sulfur, polysulfide shuttle effect, and lithium‐metal deterioration cause a decrease in practical energy density and fast capacity fade in lithium‐sulfur (Li‐S) batteries. This study presents an integrated strategy for the development of hybrid Li‐S batteries based on a gel sulfur cathode, a solid electrolyte, and a protective anolyte composed of a highly concentrated salt electrolyte containing mixed additives. The dense solid electrolyte completely blocks polysulfide diffusion, and also makes it possible to investigate the cathode and anode independently. This gel cathode effectively traps the polysulfide active material while maintaining a low electrolyte to sulfur ratio of 5.2 mL g?1. The anolyte effectively protects the Li metal and suppresses the consumption of liquid electrolyte, enabling stable long‐term cycling for over 700 h in Li symmetric cells. This advanced design can simultaneously suppress the polysulfide shuttle, protect Li metal, and reduce the liquid electrolyte usage. The assembled hybrid batteries exhibit remarkably stable cycling performance over 300 cycles with high capacity. Finally, surface‐sensitive techniques are carried out to directly visualize and probe the interphase formed on the surface of the Li1.5Al0.5Ge1.5(PO4)3 (LAGP) pellet, which may help stabilize the solid–liquid interface.  相似文献   

17.
Minimizing electrolyte use is essential to achieve high practical energy density of lithium–sulfur (Li–S) batteries. However, the sulfur cathode is more readily passivated under a lean electrolyte condition, resulting in low sulfur utilization. In addition, continuous electrolyte decomposition on the Li metal anode aggravates the problem, provoking rapid capacity decay. In this work, the dual functionalities of NO3? as a high‐donor‐number (DN) salt anion is presented, which improves the sulfur utilization and cycling stability of lean‐electrolyte Li–S batteries. The NO3? anion elevates the solubility of the sulfur species based on its high electron donating ability, achieving a high sulfur utilization of above 1200 mA h g?1. Furthermore, the anion suppresses electrolyte decomposition on the Li metal by regulating the lithium ion (Li+) solvation sheath, enhancing the cycle performance of the lean electrolyte cell. By understanding the anionic effects, this work demonstrates the potential of the high‐DN electrolyte, which is beneficial for both the cathode and anode of Li–S batteries.  相似文献   

18.
Narrow electrochemical stability window (1.23 V) of aqueous electrolytes is always considered the key obstacle preventing aqueous sodium‐ion chemistry of practical energy density and cycle life. The sodium‐ion water‐in‐salt electrolyte (NaWiSE) eliminates this barrier by offering a 2.5 V window through suppressing hydrogen evolution on anode with the formation of a Na+‐conducting solid‐electrolyte interphase (SEI) and reducing the overall electrochemical activity of water on cathode. A full aqueous Na‐ion battery constructed on Na0.66[Mn0.66Ti0.34]O2 as cathode and NaTi2(PO4)3 as anode exhibits superior performance at both low and high rates, as exemplified by extraordinarily high Coulombic efficiency (>99.2%) at a low rate (0.2 C) for >350 cycles, and excellent cycling stability with negligible capacity losses (0.006% per cycle) at a high rate (1 C) for >1200 cycles. Molecular modeling reveals some key differences between Li‐ion and Na‐ion WiSE, and identifies a more pronounced ion aggregation with frequent contacts between the sodium cation and fluorine of anion in the latter as one main factor responsible for the formation of a dense SEI at lower salt concentration than its Li cousin.  相似文献   

19.
Mass dissolution is one main problems for cathodes in aqueous electrolytes due to the strong polarity of water molecules. In principle, mass dissolution is a thermodynamically favorable process as determined by the Gibbs free energy. However, in real situations, dissolution kinetics, which include viscosity, dissolving mass mobility, and interface properties, are also a critical factor influencing the dissolution rate. Both thermodynamic and kinetic dissolving factors can be regulated by the ratio of salt to solvent in the electrolyte. In this study, concentration‐controlled cathode dissolution is investigated in a susceptible Na3V2(PO4)3 cathode whose time‐, cycle‐, and state‐of‐charge‐dependent dissolubility are evaluated by multiple electrochemical and chemical methods. It is verified that the super‐highly concentrated water‐in‐salt electrolyte has a high viscosity, low vanadium ion diffusion, low polarity of solvated water, and scarce solute?water dissolving surfaces. These factors significantly lower the thermodynamic‐controlled solubility and the dissolving kinetics via time and physical space local mass interfacial confinement, thereby inducing a new mechanism of interface concentrated‐confinement which improves the cycling stability in real aqueous rechargeable sodium‐ion batteries.  相似文献   

20.
The pressing demand on the electronic vehicles with long driving range on a single charge has necessitated the development of next‐generation high‐energy‐density batteries. Non‐aqueous Li‐O2 batteries have received rapidly growing attention due to their higher theoretical energy densities compared to those of state‐of‐the‐art Li‐ion batteries.To make them practical for commercial applications, many critical issues must be overcome, including low round‐trip efficiency and poor cycling stability, which are intimately connected to the problems resulting from cathode degradation during cycling. Encouragingly, during the past years, much effort has been devoted to enhancing the stability of the cathode using a variety of strategies and these have effectively surmounted the challenges derived from cathode deteriorations,thus endowing Li‐O2 batteries with significantly improved electrochemical performances. Here, a brief overview of the general development of Li‐O2 battery is presented. Then, critical issues relevant to the cathode instability are discussed and remarkable achievements in enhancing the cathode stability are highlighted. Finally, perspectives towards the development of next generation highly stable cathode are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号