首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Recently, anionic‐redox‐based materials have shown promising electrochemical performance as cathode materials for sodium‐ion batteries. However, one of the limiting factors in the development of oxygen‐redox‐based electrodes is their low operating voltage. In this study, the operating voltage of oxygen‐redox‐based electrodes is raised by incorporating nickel into P2‐type Na2/3[Zn0.3Mn0.7]O2 in such a way that the zinc is partially substituted by nickel. As designed, the resulting P2‐type Na2/3[(Ni0.5Zn0.5)0.3Mn0.7]O2 electrode exhibits an average operating voltage of 3.5 V and retains 95% of its initial capacity after 200 cycles in the voltage range of 2.3–4.6 V at 0.1C (26 mA g?1). Operando X‐ray diffraction analysis reveals the reversible phase transition: P2 to OP4 phase on charge and recovery to the P2 phase on discharge. Moreover, ex situ X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies reveal that the capacity is generated by the combination of Ni2+/Ni4+ and O2?/O1? redox pairs, which is supported by first‐principles calculations. It is thought that this kind of high voltage redox species combined with oxygen redox could be an interesting approach to further increase energy density of cathode materials for not only sodium‐based rechargeable batteries, but other alkali‐ion battery systems.  相似文献   

2.
3.
Rechargeable ion batteries have contributed immensely to shaping the modern world and been seriously considered for the efficient storage and utilization of intermittent renewable energies. To fulfill their potential in the future market, superior battery performance of high capacity, great rate capability, and long lifespan is undoubtedly required. In the past decade, along with discovering new electrode materials, the focus has been shifting more and more toward rational electrode designs because the performance is intimately connected to the electrode architectures, particularly their designs at the nanoscale that can alleviate the reliance on the materials' intrinsic nature. The utilization of nanoarchitectured arrays in the design of electrodes has been proven to significantly improve the battery performance. A comprehensive summary of the structural features and fabrications of the nanoarchitectured array electrodes is provided, and some of the latest achievements in the area of both lithium‐ and sodium‐ion batteries are highlighted. Finally, future challenges and opportunities that would allow further development of such advanced electrode configuration are discussed.  相似文献   

4.
Few‐layer MoS2 nanosheets are successfully synthesized using a simple and scalable ultrasonic exfoliation technique. The thicknesses of the MoS2 nanosheets ares about 10 nm as measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The unique nanosheet architecture renders the high‐rate transportation of sodium ions due to the short diffusion paths provided by ultrathin thickness and the large interlayer space within the MoS2 crystal structure (d(002) = 6.38 Å). When applied as anode materials in sodium‐ion batteries, MoS2 nanosheets exhibit a high, reversible sodium storage capacity and excellent cyclability. The MoS2 nanosheets also demonstrate good electrochemical performance at high current densities.  相似文献   

5.
6.
Herein, a new P2‐type layered oxide is proposed as an outstanding intercalation cathode material for high energy density sodium‐ion batteries (SIBs). On the basis of the stoichiometry of sodium and transition metals, the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode is synthesized without impurities phase by partially substituting Ni and Fe into the Mn sites. The partial substitution results in a smoothing of the electrochemical charge/discharge profiles and thus greatly improves the battery performance. The P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode delivers an extremely high discharge capacity of 221.5 mAh g?1 with a high average potential of ≈2.9 V (vs Na/Na+) for SIBs. In addition, the fast Na‐ion transport in the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode structure enables good power capability with an extremely high current density of 2400 mA g?1 (full charge/discharge in 12 min) and long‐term cycling stability with ≈80% capacity retention after 500 cycles at 600 mA g?1. A combination of electrochemical profiles, in operando synchrotron X‐ray diffraction analysis, and first‐principles calculations are used to understand the overall Na storage mechanism of P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2.  相似文献   

7.
Sodium (Na) super ion conductor structured Na3V2(PO4)3 (NVP) is extensively explored as cathode material for sodium‐ion batteries (SIBs) due to its large interstitial channels for Na+ migration. The synthesis of 3D graphene‐like structure coated on NVP nanoflakes arrays via a one‐pot, solid‐state reaction in molten hydrocarbon is reported. The NVP nanoflakes are uniformly coated by the in situ generated 3D graphene‐like layers with the thickness of 3 nm. As a cathode material, graphene covered NVP nanoflakes exhibit excellent electrochemical performances, including close to theoretical reversible capacity (115.2 mA h g?1 at 1 C), superior rate capability (75.9 mA h g?1 at 200 C), and excellent cyclic stability (62.5% of capacity retention over 30000 cycles at 50 C). Furthermore, the 3D graphene‐like cages after removing NVP also serve as a good anode material and deliver a specific capacity of 242.5 mA h g?1 at 0.1 A g?1. The full SIB using these two cathode and anode materials delivers a high specific capacity (109.2 mA h g?1 at 0.1 A g?1) and good cycling stability (77.1% capacity retention over 200 cycles at 0.1 A g?1).  相似文献   

8.
The increase in electricity generation poses growing demands on energy storage systems, thus offering a chance for the success of the reliable and cost‐effective energy storage technologies. Sodium ion batteries are emerging as such a technology, which is however not yet mature enough to enter the market. At the crux of building practical sodium ion batteries is the development of electrode materials that promise sufficient cost‐ and performance‐competitiveness. As such, herein, all typical sodium storage materials are discussed, considering their fabrication methods and sodiation mechanisms in detail. A comprehensive cross‐literature and cross‐material comparison, which also includes the related thermodynamic analysis of their sodiation products, is also provided. The review focusses particularly on anodes and sodium‐free cathodes, as they both play the role of the acceptor rather than the donor of sodium ions in their operation in batteries; their difference lies in the (de‐)sodiation voltage. In the discussion, special attention is paid to contradictory observations and interpretations in contemporary sodium ion battery research, since debates on these controversies are likely to fuel future sodium battery research.  相似文献   

9.
10.
Grid‐scale energy storage systems (ESSs) that can connect to sustainable energy resources have received great attention in an effort to satisfy ever‐growing energy demands. Although recent advances in Li‐ion battery (LIB) technology have increased the energy density to a level applicable to grid‐scale ESSs, the high cost of Li and transition metals have led to a search for lower‐cost battery system alternatives. Based on the abundance and accessibility of Na and its similar electrochemistry to the well‐established LIB technology, Na‐ion batteries (NIBs) have attracted significant attention as an ideal candidate for grid‐scale ESSs. Since research on NIB chemistry resurged in 2010, various positive and negative electrode materials have been synthesized and evaluated for NIBs. Nonetheless, studies on NIB chemistry are still in their infancy compared with LIB technology, and further improvements are required in terms of energy, power density, and electrochemical stability for commercialization. Most recent progress on electrode materials for NIBs, including the discovery of new electrode materials and their Na storage mechanisms, is briefly reviewed. In addition, efforts to enhance the electrochemical properties of NIB electrode materials as well as the challenges and perspectives involving these materials are discussed.  相似文献   

11.
Benefiting from the high abundance and low cost of sodium resource, rechargeable sodium‐ion batteries (SIBs) are regarded as promising candidates for large‐scale electrochemical energy storage and conversion. Due to the heavier mass and larger radius of Na+ than that of Li+, SIBs with inorganic electrode materials are currently plagued with low capacity and insufficient cycling life. In comparison, organic electrode materials display the advantages of structure designability, high capacity and low limitation of cationic radius. However, organic electrode materials also encounter issues such as high‐solubility in electrolyte and low conductivity. Here, recently reported organic electrode materials, which mainly include the reactions based on either carbon‐oxygen double bond or carbon‐nitrogen double bond, and doping reactions, are systematically reviewed. Furthermore, the design strategies of organic electrodes are comprehensively summarized. The working voltage is regulated through controlling the lowest unoccupied molecular orbital energies. The theoretical capacity can be enhanced by increasing the active groups. The dissolution is inhibited with elevating the intermolecular forces with proper molecular weight. The conductivity can be improved with extending conjugated structures. Future research into organic electrodes should focus on the development of full SIBs with aqueous/aprotic electrolytes and long cycling stability.  相似文献   

12.
ReS2 (rhenium disulfide) is a new transition‐metal dichalcogenide that exhibits 1T′ phase and extremely weak interlayer van der Waals interactions. This makes it promising as an anode material for sodium‐ion batteries. However, achieving both a high‐rate capability and a long‐life has remained a major research challenge. Here, a new composite is reported, in which both are realized for the first time. 1T′‐ReS2 is confined through strong interfacial interaction in a 2D‐honeycombed carbon nanosheets that comprise an rGO inter‐layer and a N‐doped carbon coating‐layer (rGO@ReS2@N‐C). The strong interfacial interaction between carbon and ReS2 increases overall conductivity and decreases Na+ diffusion resistance, whilst the intended 2D‐honeycombed carbon protective layer maintains structural morphology and electrochemical activity during long‐term cycling. These findings are confirmed by advanced characterization techniques, electrochemical measurement, and density functional theory calculation. The new rGO@ReS2@N‐C exhibits the greatest rate performance reported so far for ReS2 of 231 mAh g?1 at 10 A g?1. Significantly, this is together with ultra‐stable long‐term cycling of 192 mAh g?1 at 2 A g?1 after 4000 cycles.  相似文献   

13.
Cathode materials are usually active in the range of 2–4.3 V, but the decomposition of the electrolytic salt above 4 V versus Na+/Na is common. Arguably, the greatest concern is the formation of HF after the reaction of the salts with water molecules, which are present as an impurity in the electrolyte. This HF ceaselessly attacks the active materials and gradually causes the failure of the electrode via electric isolation of the active materials. In this study, a bioinspired β‐NaCaPO4 nanolayer is reported on a P2‐type layered Na2/3[Ni1/3Mn2/3]O2 cathode material. The coating layers successfully scavenge HF and H2O, and excellent capacity retention is achieved with the β‐NaCaPO4‐coated Na2/3[Ni1/3Mn2/3]O2 electrode. This retention is possible because a less acidic environment is produced in the Na cells during prolonged cycling. The intrinsic stability of the coating layer also assists in delaying the exothermic decomposition reaction of the desodiated electrodes. Formation and reaction mechanisms are suggested for the coating layers responsible for the excellent electrode performance. The suggested technology is promising for use with cathode materials in rechargeable sodium batteries to mitigate the effects of acidic conditions in Na cells.  相似文献   

14.
As the rapid growth of the lithium‐ion battery (LIB) market raises concerns about limited lithium resources, rechargeable sodium‐ion batteries (SIBs) are attracting growing attention in the field of electrical energy storage due to the large abundance of sodium. Compared with the well‐developed commercial LIBs, all components of the SIB system, such as the electrode, electrolyte, binder, and separator, need further exploration before reaching a practical industrial application level. Drawing lessons from the LIB research, the SIB electrode materials are being extensively investigated, resulting in tremendous progress in recent years. In this article, the progress of the research on the development of electrode materials for SIBs is summarized. A variety of new electrode materials for SIBs, including transition‐metal oxides with a layered or tunnel structure, polyanionic compounds, and organic molecules, have been proposed and systematically investigated. Several promising materials with moderate energy density and ultra‐long cycling performance are demonstrated. Appropriate doping and/or surface treatment methodologies are developed to effectively promote the electrochemical properties. The challenges of and opportunities for exploiting satisfactory SIB electrode materials for practical applications are outlined.  相似文献   

15.
The recent proliferation of renewable energy generation offers mankind hope, with regard to combatting global climate change. However, reaping the full benefits of these renewable energy sources requires the ability to store and distribute any renewable energy generated in a cost‐effective, safe, and sustainable manner. As such, sodium‐ion batteries (NIBs) have been touted as an attractive storage technology due to their elemental abundance, promising electrochemical performance and environmentally benign nature. Moreover, new developments in sodium battery materials have enabled the adoption of high‐voltage and high‐capacity cathodes free of rare earth elements such as Li, Co, Ni, offering pathways for low‐cost NIBs that match their lithium counterparts in energy density while serving the needs for large‐scale grid energy storage. In this essay, a range of battery chemistries are discussed alongside their respective battery properties while keeping metrics for grid storage in mind. Matters regarding materials and full cell cost, supply chain and environmental sustainability are discussed, with emphasis on the need to eliminate several elements (Li, Ni, Co) from NIBs. Future directions for research are also discussed, along with potential strategies to overcome obstacles in battery safety and sustainable recyclability.  相似文献   

16.
Sodium‐ion batteries (SIBs) have been considered as the most promising candidate for large‐scale energy storage system owing to the economic efficiency resulting from abundant sodium resources, superior safety, and similar chemical properties to the commercial lithium‐ion battery. Despite the long period of academic research, how to realize sodium‐ion battery commercialization for market applications is still a great challenge. Thus, from the perspective of future practical application, this review will identify the factors that are restricting commercialization, and evaluate the existing active materials and sodium‐ion‐based full‐cell system. The design and development trends that are needed for SIBs to meet the requirements of practical applications in large‐scale energy storage will also be discussed in detail.  相似文献   

17.
Inspired by the great success of graphite in lithium‐ion batteries, anode materials that undergo an intercalation mechanism are considered to provide stable and reversible electrochemical sodium‐ion storage for sodium‐ion battery (SIB) applications. Though MoS2 is a promising 2D material for SIBs, it suffers from deformation of its layered structure during repeated intercalation of Na+, resulting in undesirable electrochemical behaviors. In this study, vertically oriented MoS2 on nitrogenous reduced graphene oxide sheets (VO‐MoS2/N‐RGO) is presented with designed spatial geometries, including sheet density and height, which can deliver a remarkably high reversible capacity of 255 mA h g?1 at a current density of 0.2 A g?1 and 245 mA h g?1 at a current density of 1 A g?1, with a total fluctuation of 5.35% over 1300 cycles. These results are superior to those obtained with well‐developed hard carbon structures. Furthermore, a SIB full cell composed of the optimized VO‐MoS2/N‐RGO anode and a Na2V3(PO4)3 cathode reaches a specific capacity of 262 mA h g?1 (based on the anode mass) during 50 cycles, with an operated voltage range of 2.4 V, demonstrating the potentially rewarding SIB performance, which is useful for further battery development.  相似文献   

18.
The synthesis of a new layered cathode material, Na0.5[Ni0.23Fe0.13Mn0.63]O2, and its characterization in terms of crystalline structure and electrochemical performance in a sodium cell is reported. X‐ray diffraction studies and high resolution scanning electron microscopy images reveal a well‐defined P2‐type layered structure, while the electrochemical tests demonstrate excellent characteristics in terms of high capacity and cycle life. This performance, the low cost, and the environmental compatibility of its component poses Na0.5[Ni0.23Fe0.13Mn0.63]O2 to be among the most promising materials for the next generation of sodium‐ion batteries.  相似文献   

19.
Room‐temperature rechargeable sodium‐ion batteries are considered as a promising alternative technology for grid and other storage applications due to their competitive cost benefit and sustainable resource supply, triumphing other battery systems on the market. To facilitate the practical realization of the sodium‐ion technology, the energy density of sodium‐ion batteries needs to be boosted to the level of current commercial Li‐ion batteries. An effective approach would be to elevate the operating voltage of the battery, which requires the use of electrochemically stable cathode materials with high voltage versus Na+/Na. This review summarizes the recent progress with the emerging high‐voltage cathode materials for room‐temperature sodium‐ion batteries, which include layered transitional‐metal oxides, Na‐rich materials, and polyanion compounds. The key challenges and corresponding strategies for these materials are also discussed, with an emphasis placed on the intrinsic structural properties, Na storage electrochemistry, and the voltage variation tendency with respect to the redox reactions. The insights presented in this article can serve as a guide for improving the energy densities of room‐temperature Na‐ion batteries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号