首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Changes in polytene chromosome 3 L puffing patterns in the fat body ofDrosophila melanogaster larvae and prepupae are compared to those in the salivary gland. While some general features are common to the two tissues, there are differences which reflect their different developmental roles. In vitro experiments with fat body chromosomes show that they have a distinct response to ecdysteroids which is different from that of salivary gland chromosomes, and which does not,in this culture system, reproduce the changes observed in normal development. In short term culture experiments, the fat body chromosomes appear more sensitive to ecdysteroids than the salivary gland chromosomes and, although 20-OH ecdysone is more active than ecdysone in these assays, the possibility is not excluded that ecdysone has a role in normal development as it appears to alter gene activity at physiological levels in these cells.  相似文献   

2.
3.
The X chromosomally located allele Sgs-4 c for a larval secretion protein of Drosophila melanogaster is normally expressed in female larvae of the strain Oregon R and is hyperexpressed in male larvae exhibiting dosage compensation; the allele Sgs-4 d in the strain Samarkand is weakly expressed and is not hyperexpressed in male larvae showing a dosage effect. P element-mediated transformation of upstream DNA sequences from both alleles combined with Sgs-4 d coding and downstream sequences was performed to localize sequences which are responsible for the level of gene expression and for hyperexpression of Sgs-4 c in male larvae. Our results demonstrate that weak expression and dosage effect are inherited with the upstream region from –1 to –838. This Samarkand fragment differs from the homologous Oregon R region only by a C to T transiion at –344 which lies within an assumed binding sequence for the ecdysone receptor complex of dyad base symmetry. Replacing the Samarkand upstream region from –1 to –838 by the Oregon R region restores normal Sgs-4 expression and dosage compensation. Hyperexpression in male larvae displays high sensitivity to position effect and is nearly completely inhibited in one transformed line under heterozygous conditions. The integration of an Sgs-4 d transposon into a weak spot of polytene chromosome 2L results in a decrease in gene expression. The GTT- and GT-rich regions at –1.2 and –2.0 kb do not obviously influence Sgs-4 expression but possibly play a role in induction of stage-specific chromosome puffing.  相似文献   

4.
In late third instar larvae and prepupae of Drosophila melanogaster there is a complex change in puffing patterns in the salivary gland chromosomes. There are two peaks of activity in this period. The first, in larvae, is known to be under the control of the moulting hormone ecdysone. The second, in prepupae, is now shown by the in vitro culture of prepupal glands to be under the specific control of β-ecdysone in a manner similar to the first. A new class of puffs, active between these two peaks, whose induction is inhibited by ecdysone in vitro, is described. The behaviour of these puffs, exemplified by 75CD and 63E, suggests a period of very low ecdysone titre in vivo. The developmental significance of the role of ecdysone during prepupal development is discussed.  相似文献   

5.
6.
Juvenile hormone esterase (JHE) activity, ecdysone titre, and developmental competence of the epidermis were determined in last instar larvae and pupae of Galleria mellonella. Haemolymph JHE activity reaches a peak before increases are observed in ecdysone titre both during larval-pupal and pupal-adult metamorphosis. JHE activity is low during the penultimate larval instar although general esterase activity is relatively high. In last instar larvae two ecdysone peaks are noted after the increase in JHE activity. Furthermore, epidermal cell reprogramming occurs just after the increase in haemolymph JHE activity and possibly before the first increase in ecdysone titre. This was tested by injection of high doses of β-ecdysone into last instar larvae of different ages resulting in rapid cuticle deposition. Reprogramming occurred if the resulting cuticle was of the pupal type. These correlative observations may increase our understanding of the relative importance of an ecdysone surge in the absence of JH in reprogramming of the insect epidermis.  相似文献   

7.
8.
In the tobacco hornworm, Manduca sexta, metamorphosis occurs in response to two releases of ecdysone that occur 2 days apart. Epidermis was explanted from feeding final-instar larvae before the first release of ecdysone and was cultured in Grace's medium. When exposed to 1 μg/ml of β-ecdysone for 24 hr and then to hormone-free medium for 24 hr, followed by 5 μg/ml of β-ecdysone for 4 days, the epidermis produced tanned pupal cuticle in vitro. During the first 24 hr of exposure to β-ecdysone, the epidermis first changed its cellular commitment to that for pupal cuticle formation (ET50 = 14 hr), then later (by 22 hr) it became committed to tan that cuticle. Then, for most of the pupal cuticle to be tanned, at least a 12-hr period of culture in hormone-free medium was required before the cuticle synthesis was initiated. Consequently, some events prerequisite to sclerotization of pupal cuticle not only occur during the ecdysone-induced change in commitment but also during the ecdysone-free period. When the tissue was preincubated in 3 μg/ml of juvenile hormone (JH I or a mimic epoxygeranylsesamole) for 3 hr and then exposed to both ecdysone and juvenile hormone for 24 hr, it subsequently formed larval cuticle. The optimal conditions for this larval cuticle formation were exposure to 5 μg/ml of β-ecdysone in the presence of 3 μg/ml of epoxygeranylsesamole for 48 hr. When the epidermis was cultured in Grace's medium for 3 days and then exposed to 5 μg/ml of β-ecdysone for 4 days, 70% of the pieces formed pupal cuticle. By contrast, if both ecdysone and JH were added, 77% formed larval cuticle. Therefore, the change from larval to pupal commitment of the epidermal cells requires not only the absence of JH, but also exposure to ecdysone.  相似文献   

9.
The level of ecdysone in Drosophila melanogaster was determined by a radioimmune assay in organisms selected between the second larval instar and maturity. Maxima in the titer of the hormone were observed at puparium formation and 38 hr later, just prior to the secretion of the adult cuticle. The level of ecdysone was very low in adults of either sex. However, adult females had significantly more ecdysone per organism than did males. The magnitude of this difference could be correlated with ovarian development, suggesting a possible role for ecdysone in ovarian maturation in this organism.  相似文献   

10.
Heat shock protein induction is often associated with a cellular response to a harmful environment or to adverse life conditions. The main aims of our study were (1) to evaluate the cytotoxic potential of cypermethrin; and (2) to investigate the suitability of stress-induced heat shock protein Hsp70 as a biomarker for environmental pollutants in transgenic Drosophila melanogaster (Hsp70-lacZ)Bg9. Different concentrations of cypermethrin (0.002, 0.2, 0.5 and 50.0 p.p.m.) were mixed with food. Third instar larvae of transgenic Drosophila melanogaster were allowed to feed on these mixtures for different time intervals (2, 4, 6, 12, 24 and 48h). Following feeding, hsp70 induction and tissue damage were evaluated. In the highest concentration treatment group (50 p.p.m.), 100% larval mortality was recorded after 12 h exposure. Hsp70 was found to be induced even at the lowest concentration (0.002 p.p.m.) of the insecticide, while tissue damage was observed in the larvae exposed for 48 h. While an insignificant decline in hsp70 expression was observed in the larvae exposed to cypermethrin at a dietary concentration of 0.002 p.p.m. after 48 h compared with those exposed for 24 h, in the next two higher concentrations of the toxicant, a similar but significant decline in hsp70 expression was evident in the exposed larvae after 48 h. The present study reveals the cytotoxic potential of cypermethrin and further proposes that hsp70 induction in transgenic Drosophila melanogaster could be used as a sensitive biomarker in risk assessment.  相似文献   

11.
12.
In Bombyx mori, two dorsolateral neurosecretory cells (NSCs) in each of the two brain lobes have been identified as prothoracicotropic hormone (PTTH) producing cells. This neuropeptide in insects stimulates the prothoracic gland for the synthesis and release of ecdysone, responsible for the molting events. Allatotropin (AT) and allatostatin (AST) are allatoregulatory neuropeptides that regulate juvenile hormone biosynthesis. Here, by using RT-qPCR, we showed that in B. mori, nutritional stress modulates the mRNA expression of AT and AST-C (allatostain type C) in the central nervous system consisting of the brain lobes and all the associated ganglia. Using whole-mount in situ hybridization, we showed that the feeding status of Bombyx larvae also influences the expression of PTTH in the NSCs of the brain. Food deprivation significantly decreased the mRNA expression levels of PTTH in larvae at active or terminal growth period. Further, we showed that insulin modulates the expression level of PTTH. However, its action was dependent on the feeding status of the larvae. At feeding, the insulin decreased the PTTH expression level, while at food deprivation, the insulin increased the PTTH expression level. The data thus indicates that larval feeding status plays an important role in altering the mRNA expression levels of allatoregulatory peptide genes and PTTH.  相似文献   

13.
《Autophagy》2013,9(7):980-990
Autophagy is a lysosomal-mediated degradation process that promotes cell survival during nutrient-limiting conditions. However, excessive autophagy results in cell death. In Drosophila, autophagy is regulated nutritionally, hormonally and developmentally in several tissues, including the fat body, a nutrient-storage organ. Here, we use a proteomics approach to identify components of starvation-induced autophagic responses in the Drosophila fat body. Using cICATTM labeling and mass spectrometry, differences in protein expression levels of normal compared to starved fat bodies were determined. Candidates were analyzed genetically for their involvement in autophagy in fat bodies deficient for the respective genes. One of these genes, Desat1, encodes a lipid desaturase. Desat1 mutant cells fail to induce autophagy upon starvation. The desat1 protein localizes to autophagic structures after nutrient depletion and is required for fly development. Lipid analyses revealed that Desat1 regulates the composition of lipids in Drosophila. We propose that Desat1 exerts its role in autophagy by controlling lipid biosynthesis and/or signaling necessary for autophagic responses.  相似文献   

14.
Exposure of insects and higher orders of animals to UVC radiation has been shown to result in toxicity with a delayed expression. We have observed an immediate writhing response in slowly wandering third instar larvae of Drosophila melanogaster exposed to UVC radiation at doses that were not lethal. UVB and UVA radiation had no effect. Mutants for the visual and sensory systems appeared to respond normally, but CO2 anesthesia resulted in reversible inhibition, ebony and silver mutants, which affect different pathways in catecholamine metabolism, showed an absent to reduced response. Using UVC lasers, we were able to demonstrate a response in different regions of the larval body. Furthermore, a 193 nm laser that penetrates only 2–5 μm was able to induce a response but unable to kill the larvae. These results suggest a photochemical reaction occurs in the cuticle which produces free radicals that stimulate the nerves and muscle which are present immediately below the epidermis. Possible targets for the UVC radiation are catecholic compounds secreted and processed into the cuticle of third instar larvae just prior to pupariation whose primary function is to crosslink the protein and carbohydrate components. © 1996 Wiley-Liss, Inc.  相似文献   

15.
The effects of increased levels of dopamine (feeding flies with dopamine precursor, l-dihydroxyphenylalanine) and octopamine (feeding flies with octopamine) on ecdysone 20-monooxygenase activity in young (2 days old) wild type females (the strain wt) of Drosophila virilis have been studied. l-dihydroxyphenylalanine and octopamine feeding increases ecdysone 20-monooxygenase activity by a factor of 1.6 and 1.7, respectively. Ecdysone 20-monooxygenase activity in the young (1 day old) octopamineless females of the strain Tβh nM18 , in females of the strain P845 (precursor of Tβh nM18 strain) and in wild type females (Canton S) of Drosophila melanogaster have been measured. The absence of octopamine leads to a considerable decrease in the enzyme activity. We have also studied the effects of juvenile hormone application on ecdysone 20-monooxygenase activity in 2-day-old wt females of D. virilis and demonstrated that an increase in juvenile hormone titre leads to an increase in the enzyme activity. We discuss the supposition that ecdysone 20-monooxygenase occupies a key position in the regulation of 20-hydroxyecdysone titre under the conditions that lead to changes in juvenile hormone titre and biogenic amine levels.  相似文献   

16.
In accordance with our earlier results, quinone methide formation was confirmed to be the major pathway for the oxidation of N-acetyldopamine (NADA) by cuticle-bound enzymes from Sarcophaga bullata larvae. In addition, with the use of a newly developed HPLC separation condition and cuticle prepared by gentle procedures, it could be demonstrated that 1, 2-dehydro-NADA and its dimeric oxidation products are also generated in the reaction mixture containing a high concentration of NADA albeit at a much lower amount than the NADA quinone methide water adduct, viz., N-acetylnorepinephrine (NANE). By using different buffers, it was also possible to establish the accumulation of NADA quinone in reaction mixtures containing NADA and cuticle. That the 1,2-dehydro-NADA formation is due to the action of a NADA desaturase system was established by pH and temperature studies and by differential inhibition of NANE production. Of the various cuticle examined, adult cuticle of Locusta migratoria, presclerotized cuticle of Periplaneta americana, and white puparial cases of Drosophila melanogaster exhibited more NADA desaturase activity than NANE generating activity, while the reverse was observed with the larval cuticle of Tenebrio molitor and pharate pupal cuticle of Manduca sexta. These studies indicate that both NADA quinone methide and 1, 2-dehydro NADA are formed during enzymatic activation of NADA in insect cuticle. Based on these results, a unified mechanism for β-sclerotization involving quinone methides as the reactive species is presented.  相似文献   

17.
18.
Recovery from weight loss after stress is important for all organisms, although the recovery mechanisms are not fully understood. We are working to clarify these mechanisms. Here, we recorded enhanced feeding activity of Drosophila melanogaster larvae from 2 to 4 h after heat stress at 35°C for 1 h. During the post‐stress period, expression levels of sweet taste gustatory receptor genes (Grs), Gr5a, Gr43a, Gr64a, and Gr64f, were elevated, whereas bitter taste Grs, Gr66a, and Gr33a, were decreased in expression and expression of a non‐typical taste receptor Gr, Gr68a, was unchanged. Similar upregulation of Gr5a and downregulation of Gr66a was recorded after cold stress at 4°C. Expression levels of tropomyosin and ATP synthase ß subunit were significantly increased in larval mouth parts around 3 to 5 h after the heat stress. We infer that up‐regulation of post‐stress larval feeding activity, and weight recovery, is mediated by increasing capacity for mouth part muscular movements and changes in taste sensing physiology. We propose that Drosophila larvae, and likely insects generally, express an efficient mechanism to recover from weight loss during post‐stress periods.  相似文献   

19.
20.
In the absence of the prothoracic glands, fifth instar larvae of Locusta migratoria contain no demonstrable quantities of ecdysone and ecdysterone (assayed together in the Calliphora bioassay), whereas normal larvae show a high peak of ecdysone activity. The metabolic fate of injected radiolabelled ecdysone is found to be very similar in prothoracectomized larvae to that of normal larvae (hydroxylation rate, dehydrogenation of ecdysone and ecdysterone, inactivation rate). However, in the absence of the prothoracic glands, the larvae excrete radiolabelled ecdysone in their faecal material at a rate which is considerably higher than that of normal insects of the same age. These results are discussed in view of the regulation of the ecdysone titres by the prothoracic glands in L. migratoria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号