首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soft carbon has attracted tremendous attention as an anode in rocking‐chair batteries owing to its exceptional properties including low‐cost, tunable interlayer distance, and favorable electronic conductivity. However, it fails to exhibit decent performance for sodium‐ion storage owing to difficulties in the formation of sodium intercalation compounds. Here, microporous soft carbon nanosheets are developed via a microwave induced exfoliation strategy from a conventional soft carbon compound obtained by pyrolysis of 3,4,9,10‐perylene tetracarboxylic dianhydride. The micropores and defects at the edges synergistically leads to enhanced kinetics and extra sodium‐ion storage sites, which contribute to the capacity increase from 134 to 232 mAh g?1 and a superior rate capability of 103 mAh g?1 at 1000 mA g?1 for sodium‐ion storage. In addition, the capacitance‐dominated sodium‐ion storage mechanism is identified through the kinetics analysis. The in situ X‐ray diffraction analyses are used to reveal that sodium ions intercalate into graphitic layers for the first time. Furthermore, the as‐prepared nanosheets can also function as an outstanding anode for potassium‐ion storage (reversible capacity of 291 mAh g?1) and dual‐ion full cell (cell‐level capacity of 61 mAh g?1 and average working voltage of 4.2 V). These properties represent the potential of soft carbon for achieving high‐energy, high‐rate, and low‐cost energy storage systems.  相似文献   

2.
Ca‐ion based devices are promising candidates for next‐generation energy storage with high performance and low cost, thanks to its multielectrons, superior kinetics, as well as abundance (2500 times lithium). Because of the lack of an appropriate combination of suitable electrode materials and electrolytes, it is unsuccessful to attain a satisfactory performance on complete Ca‐ion energy storage devices. Here, the multiion reaction strategy is defined to construct a complete Ca‐ion energy storage device and a capacitor–battery hybrid mechanism is deliberately adopted. Profiting from the elaborate design, it exhibits a high reversible capacity of 92 mAh g?1, unmatchable rate capability, and a high capacity retention of 84% over 1000 cycles under room temperature, which is the best performance of reported Ca‐based energy storage devices.  相似文献   

3.
Potassium ion storage technology as a promising substitute for the well‐developed lithium ion storage technology is still at the infancy stage of development, and exploring suitable electrode materials is critical for its practical application. Here, the great feasibility of disordered, large interlayer spacing, and oxygen‐rich carbon nanosheets (CNSs) prepared by chemical vapor deposition for potassium ion storage applications is demonstrated. As an anode material, the CNSs exhibit outstanding rate capability as well as excellent cyclic stability. Taking advantage of this, a potassium ion hybrid capacitor (PIHC) is constructed by employing such CNSs as the battery‐type anode and activated carbon as the capacitor‐type cathode. The resulting device displays a high energy density of 149 Wh kg?1, an ultrahigh power output of 21 kW kg?1, as well as a long cycling life (80% capacity retention after 5000 cycles), which are all close to the state‐of‐the‐art values for PIHCs. This work promotes the development of high‐performance anode material for potassium ion storage devices, and the designed PIHC pushes the energy density and power density to a higher level.  相似文献   

4.
Structurally and chemically defective activated‐crumbled graphene (A‐CG) is employed to achieve unique synergy of large reversible potassium (K) and sodium (Na) ion storage capacity with fast charging and extended cyclability. A‐CG synthesis consists of low temperature spraying of graphene oxide slurry, followed by partial reduction annealing and air activation. For K storage, the reversible capacities are 340 mAh g?1 at 0.04 A g?1, 261 mAh g?1 at 0.5 A g?1, and 210 mAh g?1 at 2 A g?1. For Na storage, the reversible capacities are 280 mAh g?1 at 0.04 A g?1, 191 mAh g?1 at 0.5 A g?1, and 151 mAh g?1 at 2 A g?1. A‐CG shows a stable intermediate rate (0.5 Ag?1) cycling with both K and Na, with minimal fade after 2800 and 8000 cycles. These are among the most favorable capacity—rate capability—cyclability combinations recorded for potassium‐ion battery and sodium‐ion battery carbons. Electroanalytical studies (cyclic voltammetry, galvanostatic intermittent titration technique, b‐value) and density functional theory (DFT) reveal that enhanced electrochemical performance originates from ion adsorption at various defects, such as Stone–Wales defects. Moreover, DFT highlights enhanced thermodynamic stability of A‐CG with adsorbed K versus with adsorbed Na, explaining the unexpected higher reversible capacity with the former.  相似文献   

5.
6.
7.
Hard carbon as a typical anode material for sodium ion batteries has received much attention in terms of its low cost and renewability. Herein, phosphorus‐functionalized hard carbon with a specific “honeycomb briquette” shaped morphology is synthesized via electrospinning technology. When applied as an anode material for Na+ storage, it exhibits an impressively high reversible capacity of 393.4 mA h g?1 with the capacity retention up to 98.2% after 100 cycles. According to first‐principle calculation, the ultrahigh capacity of the as‐prepared anode is ascribed to the enhancement of Na‐absorption through formation of P?O and P? C bonds in graphitic layers when doped with phosphorus. Moreover, the increase of electron density around the Fermi level is found to be mainly caused by O atoms instead of P atoms.  相似文献   

8.
Potassium‐ion hybrid capacitors (PIHCs) hold the advantages of high‐energy density of batteries and high‐power output of supercapacitors and thus present great promise for the next generation of electrochemical energy storage devices. One of the most crucial tasks for developing a high‐performance PIHCs is to explore a favorable anode material with capability to balance the kinetics mismatch between battery‐type anodes and capacitor‐type cathode. Herein, a reliable route for fabricating sulfur and nitrogen codoped 3D porous carbon nanosheets (S‐N‐PCNs) is reported. Systematic characterizations coupled with kinetics analysis indicate that the doped heteroatoms of sulfur and nitrogen and the amplified graphite interlayer can provide ample structural defects and redox active sites that are beneficial for improving pseudocapacitive activity, enabling fast kinetics toward efficient potassium‐ion storage. The S‐N‐PCNs are demonstrated to exhibit superior potassium storage capability with a high capacity of 107 mAh g?1 at 20 A g?1 and long cycle stability. The as‐developed PIHCs present impressive electrochemical performance with an operating voltage as high as 4.0 V, an energy density of 187 Wh kg?1, a power density of 5136 W kg?1, and a capacity retention of 86.4% after 3000 cycles.  相似文献   

9.
10.
Metallic antimony (Sb) with gray allotrope has rarely been considered from the viewpoint of two‐dimension layered system is actually a graphite‐like material, in which Sb layers consist of fused, ruffled, and six‐membered rings. Given that metallic Sb nanosheets can be played like graphene, it would be anticipated to obtain a new anode material with superior electrochemical performances for sodium storage. In this work, we propose an efficient strategy to fabricate free‐standing metallic Sb nanosheets via liquid‐phase exfoliation of gray Sb powder in an ios‐propyle alcohol (IPA) solution with a constant concentration of sodium hydroxide. As a proof of the concept, several hybrid films composed of metallic Sb nanosheets and graphene with tunable densities are achieved, in which the notorious volume change of metallic Sb can be efficiently alleviated with the aid of the good flexible graphene, and the whole density of electrode films can be significantly improved by harnessing the high density of Sb nanosheets. As a consequence, the optimized metallic Sb nanosheets‐graphene (SbNS‐G) film displays a high volumetric capacity of 1226 mAh cm–3, high‐rate capability and good cycle performance for sodium storage.  相似文献   

11.
High energy density at high power density is still a challenge for the current Li‐ion capacitors (LICs) due to the mismatch of charge‐storage capacity and electrode kinetics between capacitor‐type cathode and battery‐type anode. In this work, B and N dual‐doped 3D porous carbon nanofibers are prepared through a facile method as both capacitor‐type cathode and battery‐type anode for LICs. The B and N dual doping has profound effect in tuning the porosity, functional groups, and electrical conductivity for the porous carbon nanofibers. With rational design, the developed B and N dual‐doped carbon nanofibers (BNC) exhibit greatly improved electrochemical performance as both cathode and anode for LICs, which greatly alleviates the mismatch between the two electrodes. For the first time, a 4.5 V “dual carbon” BNC//BNC LIC device is constructed and demonstrated, exhibiting outstanding energy density and power capability compared to previously reported LICs with other configurations. In specific, the present BNC//BNC LIC device can deliver a large energy density of 220 W h kg?1 and a high power density of 22.5 kW kg?1 (at 104 W h kg?1) with reasonably good cycling stability (≈81% retention after 5000 cycles).  相似文献   

12.
Metal‐organic coordination frameworks have been widely used as efficient precursors for the preparation of functional carbon‐based materials with various nanostructures. However, to date, the design of 2D carbon nanostructures from single coordination frameworks remains a great challenge. Herein, an efficient strategy for the fabrication of N‐rich porous carbon nanosheets from 2D Zn‐hexamine coordination framework nanosheets is developed. Remarkably, the N‐doping level of carbon nanosheets can attain 16.54 at%. In addition, the thickness of the carbon nanosheets can effectively be tuned by simply adjusting the molar ratio of the starting materials. As a proof‐of‐concept application, the as‐prepared carbon nanosheets as an anode material for sodium‐ion batteries exhibit an ultrafast sodium storage capability of 194 mAh g?1 even at 10 A g?1. As far as it is known, such a high‐rate capability has been rarely achieved in previous studies on carbonaceous anode materials for Na‐ion storage. Moreover, this approach is readily controllable and could be extended to prepare a series of 2D N‐doped carbon‐based nanomaterials on a large scale.  相似文献   

13.
14.
Hard carbon is the leading candidate anode for commercialization of Na‐ion batteries. Hard carbon has a unique local atomic structure, which is composed of nanodomains of layered rumpled sheets that have short‐range local order resembling graphene within each layer, but complete disorder along the c‐axis between layers. A primary challenge holding back the development of Na‐ion batteries is that a complete understanding of the structure–capacity correlations of Na‐ion storage in hard carbon has remained elusive. This article presents two key discoveries: first, the characteristics of hard carbons structure can be modified systematically by heteroatom doping, and second, that these structural changes greatly affect Na‐ion storage properties, which reveals the mechanisms for Na storage in hard carbon. Specifically, via P or S doping, the interlayer spacing is dilated, which extends the low‐voltage plateau capacity, while increasing the defect concentrations with P or B doping leads to higher sloping sodiation capacity. The combined experimental studies and first principles calculations reveal that it is the Na‐ion‐defect binding that corresponds to the sloping capacity, while the Na intercalation between graphenic layers causes the low‐potential plateau capacity. The understanding suggests a new design principle of hard carbon anode: more reversibly binding defects and dilated turbostratic domains, given that the specific surface area is maintained low.  相似文献   

15.
16.
17.
Hard carbon is regarded as the most promising anode material for commercialization of Na ion batteries because of its high capacity and low cost. At present, the practical utilization of hard carbon anodes is largely limited by the low initial Coulombic efficiency (ICE). Na ions have been found to adopt an adsorption–insertion storage mechanism. In this paper a systematic way to control the defect concentration and porosity of hard carbon with similar overall architectures is shown. This study elucidates that the defects in the graphite layers are directly related to the ICE as they would trap Na ions and create a repulsive electric field for other Na ions so as to shorten the low‐voltage intercalation capacity. The obtained low defect and porosity hard carbon electrode has achieved the highest ICE of 86.1% (94.5% for pure hard carbon material by subtracting that of the conductive carbon black), reversible capacity of 361 mA h g?1, and excellent cycle stability (93.4% of capacity retention over 100 cycles). This result sheds light on feasible design principles for high performance Na storage hard carbon: suitable carbon layer distance and defect free graphitic layers.  相似文献   

18.
Sodium ion batteries are now attracting great attention, mainly because of the abundance of sodium resources and their cheap raw materials. 2D materials possess a unique structure for sodium storage. Among them, transition metal chalcogenides exhibit significant potential for rechargeable battery devices due to their tunable composition, remarkable structural stability, fast ion transport, and robust kinetics. Herein, ultrathin TiS2 nanosheets are synthesized by a shear‐mixing method and exhibit outstanding cycling performance (386 mAh g?1 after 200 cycles at 0.2 A g?1). To clarify the variations of galvanostatic curves and superior cycling performance, the mechanism and morphology changes are systematically investigated. This facile synthesis method is expected to shed light on the preparation of ultrathin 2D materials, whose unique morphologies could easily enable their application in rechargeable batteries.  相似文献   

19.
Li and Mn‐rich layered cathodes, despite their high specific capacity, suffer from capacity fading and discharge voltage decay upon cycling. Both specific capacity and discharge voltage of Li and Mn‐rich cathodes are stabilized upon cycling by optimized Al doping. Doping Li and Mn‐rich cathode materials Li1.2Ni0.16Mn0.56Co0.08O2 by Al on the account of manganese (as reflected by their stoichiometry) results in a decrease in their specific capacity but increases pronouncedly their stability upon cycling. Li1.2Ni0.16Mn0.51Al0.05Co0.08O2 exhibits 96% capacity retention as compared to 68% capacity retention for Li1.2Ni0.16Mn0.56Co0.08O2 after 100 cycles. This doping also reduces the decrease in the average discharge voltage upon cycling, which is the longstanding fatal drawback of these Li and Mn‐rich cathode materials. The electrochemical impedance study indicates that doping by Al has a surface stabilization effect on these cathode materials. The structural analysis of cycled electrodes by Raman spectroscopy suggests that Al doping also has a bulk stabilizing effect on the layered LiMO2 phase resulting in the better electrochemical performance of Al doped cathode materials as compared to the undoped counterpart. Results from a prolonged systematic work on these cathode materials are presented and the best results that have ever been obtained are reported.  相似文献   

20.
Preparation of hierarchical carbon nanomaterials from metal?organicframeworks (MOFs) offers immense potential in the improvement of energy density, tunability, and stability of functional materials for energy storage and conversion. How interconnected nitrogen (N)‐doped wrinkled carbon foils derived from MOF nanosheets can serve as high‐performance sodium storage materials due to their multiscale porous structure is shown here. The novel N‐doped carbon nanomaterials are synthesized through the pyrolysis of 2D Mn‐based MOFs, which are produced through the assistance of monodentate ligands to enable the planar growth of MOFs. Subsequent acid etching creates hierarchical pores and channels to allow rapid ion transport. The resulting materials achieve high‐rate capability (165 and 150 mA h g?1 at current densities of 8 and 10 A g?1, respectively) and high stability (capacity retention 72.8% after 1000 cycling at 1.0 A g?1), when they are used as anode in sodium‐ion capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号