首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Renewable-electricity-powered electrochemical CO2 reduction (CO2RR) is considered one of the most promising ways to convert exhaust CO2 into value-added chemicals and fuels. Among various CO2RR products, CO is of great significance since it can be directly used as feedstock to produce chemical products through the Fischer–Tropsch process. However, the CO2-to-CO electrocatalytic process is often accompanied by a kinetically competing side reaction: H2 evolution reaction (HER). Designing electrocatalysts with tunable electronic structures is an attractive strategy to enhance CO selectivity. In this work, a CeNCl-CeO2 heterojunction-modified Ni catalyst is successfully synthesized with high CO2RR catalytic performance by the impregnation-calcination method. Benefiting from the strong electron interaction between the CeNCl-CeO2 heterojunction and Ni nanoparticles (NPs), the catalytic performance is greatly improved. Maximal CO Faradaic efficiency (FE) is up to 90% at −0.8 V (vs RHE), plus good stability close to 12 h. Detailed electrochemical tests and density functional theory (DFT) calculation results reveal that the introduction of the CeNCl-CeO2 heterojunction tunes the electronic structure of Ni NPs. The positively charged Ni center leads to an enhanced local electronic structure, thus promoting the activation of CO2 and the adsorption of *COOH.  相似文献   

2.
Electrocatalytic CO2 reduction to fuels is considered a promising strategy for the sustainable carbon cycle. However, the improvement of the catalytic performance of CO2 electrocatalysts still poses many challenges, especially achieving the large partial current density of product and high faradaic efficiency simultaneously, which are essential for future applications of the electrochemical CO2 reduction reaction. In response, herein, an in situ porous Zn catalyst is prepared and exhibits high faradaic efficiency and large CO partial current density at the same time, benefiting from the porous architecture with increased exposure and accessibility of active sites. Furthermore, density functional theory calculations demonstrate that the high faradaic efficiency is attributed to the favorable adsorption energy of the key intermediate, which promotes CO2 electroreduction to CO.  相似文献   

3.
Electrochemical CO2 reduction reaction (CO2RR) provides a potential pathway to mitigate challenges related to CO2 emissions. Pd nanoparticles have shown interesting properties as CO2RR electrocatalysts, while how different facets of Pd affect its performance in CO2 reduction to synthesis gas with controlled H2 to CO ratios has not been understood. Herein, nanosized Pd cubes and octahedra particles dominated by Pd(100) and Pd(111) facets are, respectively, synthesized. The Pd octahedra particles show higher CO selectivity (up to 95%) and better activity than Pd cubes and commercial particles. For both Pd octahedra and cubes, the ratio of H2/CO products is tunable between 1 and 2, a desirable ratio for methanol synthesis and the Fischer–Tropsch processes. Further studies of Pd octahedra in a 25 cm2 flow cell show that a total CO current of 5.47 A is achieved at a potential of 3.4 V, corresponding to a CO partial current density of 220 mA cm?2. In situ X‐ray absorption spectroscopy studies show that regardless of facet Pd is transformed into Pd hydride (PdH) under reaction conditions. Density functional theory calculations show that the reduced binding energies of CO and HOCO intermediates on PdH(111) are key parameters to the high current density and Faradaic efficiency in CO2 to CO conversion.  相似文献   

4.
Electrochemical reduction of carbon dioxide (CO2) to fuels and value‐added industrial chemicals is a promising strategy for keeping a healthy balance between energy supply and net carbon emissions. Here, the facile transformation of residual Ni particle catalysts in carbon nanotubes into thermally stable single Ni atoms with a possible NiN3 moiety is reported, surrounded with a porous N‐doped carbon sheath through a one‐step nanoconfined pyrolysis strategy. These structural changes are confirmed by X‐ray absorption fine structure analysis and density functional theory (DFT) calculations. The dispersed Ni single atoms facilitate highly efficient electrocatalytic CO2 reduction at low overpotentials to yield CO, providing a CO faradaic efficiency exceeding 90%, turnover frequency approaching 12 000 h?1, and metal mass activity reaching about 10 600 mA mg?1, outperforming current state‐of‐the‐art single atom catalysts for CO2 reduction to CO. DFT calculations suggest that the Ni@N3 (pyrrolic) site favors *COOH formation with lower free energy than Ni@N4, in addition to exothermic CO desorption, hence enhancing electrocatalytic CO2 conversion. This finding provides a simple, scalable, and promising route for the preparation of low‐cost, abundant, and highly active single atom catalysts, benefiting future practical CO2 electrolysis.  相似文献   

5.
An Si photoelectrode with a nanoporous Au thin film for highly selective and efficient photoelectrochemical (PEC) CO2 reduction reaction (CO2RR) is presented. The nanoporous Au thin film is formed by electrochemical reduction of an anodized Au thin film. The electrochemical treatments of the Au thin film critically improve CO2 reduction catalytic activity of Au catalysts and exhibit CO Faradaic efficiency of 96% at 480 mV of overpotential. To apply the electrochemical pretreatment of Au films for PEC CO2RR, a new Si photoelectrode design with mesh‐type co‐catalysts independently wired at the front and the back of the photoelectrode is demonstrated. Due to the superior CO2RR activity of the nanoporous Au mesh and high photovoltage from Si, the Si photoelectrode with the nanoporous Au thin film mesh shows conversion of CO2 to CO with 91% Faradaic efficiency at positive potential than the CO2/CO equilibrium potential.  相似文献   

6.
7.
Rational design of electrocatalysts toward efficient CO2 electroreduction has the potential to reduce carbon emission and produce value‐added chemicals. In this work, a strategy of constructing 2D confined‐space as molecular reactors for enhanced electrocatalytic CO2 reduction selectivity is demonstrated. Highly ordered 2D nanosheet lamella assemblies are achieved via weak molecular interaction of atomically thin titania nanosheets, a variety of cationic surfactants, and SnO2 nanoparticles. The interlayer spacings can be tuned from 0.9 to 3.0 nm by using different surfactant molecules. These 2D assemblies of confined‐space catalysts exhibit a strong size dependence of CO2 electroreduction selectivity, with a peak Faradaic efficiency of 73% for formate production and excellent electrochemical stability at an optimal interspacing of ≈2.0 nm. This work suggests great potential for constructing new molecular‐size reactors, for highly selective electrocatalytic CO2 reduction.  相似文献   

8.
ABSTRACT

In this work, with Ni (110) as a model catalyst surface and CO2 as an adsorbate, a performance study of Density Functional Theory methods (functionals) is performed. CO being a possible intermediate in CO2 conversion reactions, binding energies of both, CO2 and CO, are calculated on the Ni surface and are compared with experimental data. OptPBE-vdW functional correctly predicts CO2 binding energy on Ni (?62?kJ/mol), whereas CO binding energy is correctly predicted by the rPBE-vdW functional (?138?kJ/mol). The difference in computed adsorption energies by different functionals is attributed to the calculation of gas phase CO2. Three alternate reaction systems based on a different number of C=O double bonds present in the gas phase molecule are considered to replace CO2. The error in computed adsorption energy is directly proportional to the number of C=O double bonds present in the gas phase molecule. Additionally, both functionals predict similar carbon–oxygen activation barrier (40?kJ/mol) and equivalent C1s shifts for probe species (?2.6?eV for CCH3 and +1.5?eV CO3?), with respect to adsorbed CO2. Thus, by including a correction factor of 28?kJ/mol for the computed CO2 gas phase energy, we suggest using rPBE-vdW functional to investigate CO2 conversion reactions on different metals.  相似文献   

9.
CO2 electrochemical reduction (CO2RR) can mitigate environmental issues while providing valuable products, yet challenging in activity, selectivity, and stability. Here, a CuS-Bi2S3 heterojunction precursor is reported that can in situ reconstruct to Cu-doped Bismuth (CDB) electrocatalyst during CO2RR. The CDB exhibits an industrial-compatible current density of −1.1 A cm−2 and a record-high formate formation rate of 21.0 mmol h−1 cm−2 at −0.86 V versus the reversible hydrogen electrode toward CO2RR to formate, dramatically outperforming currently reported catalysts. Importantly, the ultrawide potential region of 1050 mV with high formate Faradaic efficiency of over 90% and superior long-term stability for more than 100 h at −400 mA cm−2 can also be realized. Experimental and theoretical studies reveal that the remarkable CO2RR performance of CDB results from the doping effect of Cu which optimizes adsorption of the *OCHO and boosts the structural stability of metallic bismuth catalyst. This study provides valuable inspiration for the design of element-doping electrocatalysts to enhance catalytic activity and durability.  相似文献   

10.
Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hybrid Bi/Bi? O interface (Bi NSs) is developed, which enables CO2 reduction to formic acid (HCOOH) with high activity, selectivity, and stability. Specially, the flow cell configuration is employed to eliminate the diffusion effect of CO2 molecules and simultaneously achieve considerable current density (200 mA cm?2) for industrial application. The faradaic efficiency for transforming CO2 to HCOOH can achieve over 85 or 90% in 1 m KHCO3 or KOH for at least 10 h despite a current density that exceeds 200 mA cm?2, outperforming most of the reported CO2 electroreduction catalysts. The hybrid Bi/Bi? O surface of leafy bismuth nanosheets boosts the adsorption of CO2 and protects the surface structure of the as‐prepared leafy bismuth nanosheets, which benefits its activity and stability for CO2 electroreduction. This work shows that modifying electrocatalysts by surface oxygen groups is a promising pathway to regulate the activity and stability for selective CO2 reduction to HCOOH.  相似文献   

11.
The Haber‐Bosch process can be replaced by the ambient electrocatalytic N2 reduction reaction (NRR) to produce NH3 if suitable electrocatalysts can be developed. However, to develop high performance N2 fixation electrocatalysts, a key issue to be resolved is to achieve efficient hydrogenation of N2 without interference by the thermodynamically favored hydrogen evolution reaction (HER). Herein, in‐operando created strong Li–S interactions are reported to empower the S‐rich MoS2 nanosheets with superior NRR catalytic activity and HER suppression ability. The Li+ interactions with S‐edge sites of MoS2 can effectively suppress hydrogen evolution reaction by reducing H* adsorption free energy from 0.03 to 0.47 eV, facilitate N2 adsorption by increasing N2 adsorption free energy from –0.32 to –0.70 eV and enhance electrocatalytic N2 reduction activity by decreasing the activation energy barrier of the reaction control step (*N2 → *N2H) from 0.84 to 0.42 eV. A NH3 yield rate of 43.4 μg h?1 mg?1 MoS2 with a faradaic efficiency (FE) of 9.81% can be achieved in presence of strong Li–S interactions, more than 8 and 18 times by the same electrocatalyst in the absence of Li–S interactions. This report opens a new way to design and develop catalysts and catalysis systems.  相似文献   

12.
Electrochemical reduction of CO2 provides an opportunity to reach a carbon‐neutral energy recycling regime, in which CO2 emissions from fuel use are collected and converted back to fuels. The reduction of CO2 to CO is the first step toward the synthesis of more complex carbon‐based fuels and chemicals. Therefore, understanding this step is crucial for the development of high‐performance electrocatalyst for CO2 conversion to higher order products such as hydrocarbons. Here, atomic iron dispersed on nitrogen‐doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO2 reduction to CO. Fe/NG has a low reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen‐confined atomic Fe moieties on the nitrogen‐doped graphene layer is confirmed by aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. The CO2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N4) embedded in nitrogen‐doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.  相似文献   

13.
CuO and Cu2O are non‐noble transition metal oxide supercapacitive materials with high theoretical specific capacitances above 1800 F g?1. In this work, by adjusting organic additives of a colloidal system, Cu, Cu2O, and CuO are grown in situ on nickel foam. CuO exhibits a specific capacitance of 1355 F g?1 at 2 A g?1 in 3 m KOH, a value well above those of Cu and Cu2O (<500 F g?1), and is superior to other known CuO electrodes. The CuO electrode exhibits 70% of its initial capacity, and the Columbic efficiency remains ≈100% after 7000 cycles at 4 A g?1. Cu2O exhibits the worst electrochemical performance, mainly due to the inactive barrier layer forming on the surface. This work provides an efficient synthetic platform for both comparable supercapacitive studies and cost‐effective electrochemical energy storage applications.  相似文献   

14.
Ni‐based catalysts are traditionally considered unsuitable for the Fischer–Tropsch syntheses of olefins, due to the very strong hydrogenation ability of metallic Ni. Herein, this paradigm is challenged. A series of MnO supports nickel catalysts (denoted herein as Ni‐x) are fabricated by H2 reduction of a nickel‐manganese mixed metal oxide at temperatures (x) ranging from 250 to 600 °C. The Ni‐500 catalyst displays unprecedented performance for photothermal CO hydrogenation to olefins, with an olefin selectivity of 33.0% under ultraviolet–visible irradiation. High‐resolution transmission electron microscopy, X‐ray absorption spectroscopy (XAS), and X‐ray diffraction analyses reveal that the Ni‐x catalysts contain metallic Ni nanoparticles supported by MnO. X‐ray photoelectron spectroscopy and XAS establish that electron transfer from MnO to the Ni0 nanoparticles is responsible for modifying the electronic structure of nickel (creating Niδ? states), thereby shifting the CO hydrogenation selectivity toward light olefins. Further, density functional theory calculations show that this electron transfer lowers the adsorption energies of olefins on Ni surfaces, thus minimizing the undesirable deep hydrogenation reactions to higher alkanes. This study conclusively demonstrates that MnO‐modified Ni‐based catalyst systems can be highly selective for CO hydrogenation to light olefins.  相似文献   

15.
A systematic mechanistic investigation of CO2 reduction on a Ni-modified Cu(111) surface is performed based on an extensive set of density functional theory (DFT) calculations by focusing on the hydrocarbon CH4 formation pathways. By carefully analyzing reduction pathways on the Ni-modified Cu(111) surface, some important mechanistic information is deduced. The presence of Ni stabilizes all reaction intermediates, and thus reduces the activation barrier for almost all CO2 reduction steps. Most importantly, it can considerably lower than the activation barrier of CO2 hydrogenative dissociation into CO, which is the rate-determining step of CO2 reduction on a pure Cu(111) surface. Thus, the doping of Ni atom is able to activate CO2, leading to enhanced surface activity of CO2 reduction into hydrocarbons. Notably, the activation barriers that are required for CH4 and CH3OH formation are almost all easily overcome through the thermoactive process at ambient temperatures after doping of Ni atom. Thus, a higher CH4 and CH3OH yield may be expected in the presence of the doped Ni atom. Thermodynamic analyses indicate that doping of Ni may reduce the overpotential of CO formation through CO2 hydrogenative dissociation. On this basis, two decriptors may be proposed in order to describe the catalytic activity of Cu-based catalysts for CO2 reduction, and a perfect Cu-based alloy in CO2 reduction should moderately bind CO and form and reduce CO more easily. Simutaneously, CO hydrogenation occurs more easily on the (111) facet of Ni-modified Cu than dimerization, thereby the selectivity of (111) facet of Cu on production CH4 is further confirmed to some degree. The present study reveals a rich reaction chemistry and provides new insights to guide the rational design of Cu-based alloy catalysts for hydrocarbons formation from CO2 reduction.
Graphical Abstract Reduction pathways of CO2 into hydrocarbons?
  相似文献   

16.
Despite many promising reports of plasmon‐enhanced photocatalysis, the inability to identify the individual contributions from multiple enhancement mechanisms has delayed the development of general design rules for engineering efficient plasmonic photocatalysts. Herein, a plasmonic photocathode comprised of Au@SiO2 (core@shell) nanoparticles embedded within a Cu2O nanowire network is constructed to exclusively examine the contribution from one such mechanism: electromagnetic near‐field enhancement. The influence of the local electromagnetic field intensity is correlated with the overall light‐harvesting efficiency of the device through variation of the SiO2 shell thickness (5–22 nm) to systematically tailor the distance between the plasmonic Au nanoparticles and the Cu2O nanowires. A threefold increase in device photocurrent is achieved upon integrating the Au@SiO2 nanoparticles into the Cu2O nanowire network, further enabling a 40% reduction in semiconductor film thickness while maintaining photocathode performance. Photoelectrochemical results are further correlated with photoluminescence studies and optical simulations to confirm that the near‐field enhancement is the sole mechanism responsible for increased light absorption in the plasmonic photocathode.  相似文献   

17.
Rational design and construction of bifunctional electrocatalysts with excellent activity and durability is imperative for water splitting. Herein, a novel top‐down strategy to realize a hierarchical branched Mo‐doped sulfide/phosphide heterostructure (Mo‐Ni3S2/NixPy hollow nanorods), by partially phosphating Mo‐Ni3S2/NF flower clusters, is proposed. Benefitting from the optimized electronic structure configuration, hierarchical branched hollow nanorod structure, and abundant heterogeneous interfaces, the as‐obtained multisite Mo‐Ni3S2/NixPy/NF electrode has remarkable stability and bifunctional electrocatalytic activity in the hydrogen evolution reaction (HER)/oxygen evolution reaction (OER) in 1 m KOH solutions. It possesses an extremely low overpotential of 238 mV at the current density of 50 mA cm?2 for OER. Importantly, when assembled as anode and cathode simultaneously, it merely requires an ultralow cell voltage of 1.46 V to achieve the current density of 10 mA cm?2, with excellent durability for over 72 h, outperforming most of the reported Ni‐based bifunctional materials. Density functional theory results further confirm that the doped heterostructure can synergistically optimize Gibbs free energies of H and O‐containing intermediates (OH*, O*, and OOH*) during HER and OER processes, thus accelerating the catalytic kinetics of electrochemical water splitting. This work demonstrates the importance of the rational combination of metal doping and interface engineering for advanced catalytic materials.  相似文献   

18.
Catalytic CO2 hydrogenation to CH4 provides a promising approach to producing natural gas, and reducing the emissions of global CO2. However, the efficiency of catalytic CO2 methanation is limited by slow kinetics at low temperatures. This study first demonstrates that an air‐ and water‐stable perovskite oxyhydride BaTiO2.4H0.6 could function as an active support material for Ni‐, Ru‐based catalysts for CO2 methanation at 300–350 °C, a relatively lower temperature. With the oxyhydride support, the activity for Ni and Ru increases by a factor of 2–7 when compared to the BaTiO3 oxide support. Kinetic analysis shows reduced H2 poisoning probably due to spillover, implying that the activity change is due to the kinetics being influenced by hydride. Furthermore, the oxyhydride‐supported Ni catalyst is also durable with its catalytic performance preserved for at least 10 h under a humid environment at elevated temperatures. It is anticipated that these perovskite oxyhydrides will shed new light on the design of high‐efficiency metal‐based catalysts for water‐involved catalytic reactions.  相似文献   

19.
Electrochemical CO2 reduction (ECCO2R) requires electrons, for example, from oxygen evolution reaction (OER). However, such a multiple‐electron‐involved reaction is complicated and kinetically slow, leading to high overpotential. Herein, OER is replaced with photoelectrocatalytic phenol oxidation reaction (PECPOR) that provides electrons for ECCO2R. In an integrated cell, ECCO2R is conducted on the cathode of Cu nanowires and PECPOR is performed on the anode of SnO2 and Sb coated TiO2 nanotubes. Significant improvement of ECCO2R into CO and hydrocarbons is realized when PECPOR is conducted at a high current density. The use of this integrated system results in the reduction of the specific energy consumption by a factor of 51.33%, compared with the utilization of two half‐cells for individual ECCO2R and PECPOR. This study thus proposes a novel strategy to couple ECCO2R with PECPOR and eventually to tackle the problems of environmental pollution and energy crisis.  相似文献   

20.
It is urgently required to develop highly efficient and stable bifunctional non‐noble metal electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for water splitting. In this study, a facile electrospinning followed by a post‐carbonization treatment to synthesize nitrogen‐doped carbon nanofibers (NCNFs) integrated with Ni and Mo2C nanoparticles (Ni/Mo2C‐NCNFs) as water splitting electrocatalysts is developed. Owing to the strong hydrogen binding energy on Mo2C and high electrical conductivity of Ni, synergetic effect between Ni and Mo2C nanoparticles significantly promote both HER and OER activities. The optimized hybrid (Ni/Mo2C(1:2)‐NCNFs) delivers low overpotentials of 143 mV for HER and 288 mV for OER at a current density of 10 mA cm?2. An alkaline electrolyzer with Ni/Mo2C(1:2)‐NCNFs as catalysts for both anode and cathode exhibits a current density of 10 mA cm?2 at a voltage of 1.64 V, which is only 0.07 V larger than the benchmark of Pt/C‐RuO2 electrodes. In addition, an outstanding long‐term durability during 100 h testing without obvious degradation is achieved, which is superior to most of the noble‐metal‐free electrocatalysts reported to date. This work provides a simple and effective approach for the preparation of low‐cost and high‐performance bifunctional electrocatalysts for efficient overall water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号