首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All‐solid‐state Li‐ion batteries based on Li7La3Zr2O12 (LLZO) garnet structures require novel electrode assembly strategies to guarantee a proper Li+ transfer at the electrode–electrolyte interfaces. Here, first stable cell performances are reported for Li‐garnet, c‐Li6.25Al0.25La3Zr2O12, all‐solid‐state batteries running safely with a full ceramics setup, exemplified with the anode material Li4Ti5O12. Novel strategies to design an enhanced Li+ transfer at the electrode–electrolyte interface using an interface‐engineered all‐solid‐state battery cell based on a porous garnet electrolyte interface structure, in which the electrode material is intimately embedded, are presented. The results presented here show for the first time that all‐solid‐state Li‐ion batteries with LLZO electrolytes can be reversibly charge–discharge cycled also in the low potential ranges (≈1.5 V) for combinations with a ceramic anode material. Through a model experiment, the interface between the electrode and electrolyte constituents is systematically modified revealing that the interface engineering helps to improve delivered capacities and cycling properties of the all‐solid‐state Li‐ion batteries based on garnet‐type cubic LLZO structures.  相似文献   

2.
An all‐organic battery consisting of two redox‐polymers, namely poly(2‐vinylthianthrene) and poly(2‐methacrylamide‐TCAQ) is assembled. This all‐organic battery shows excellent performance characteristics, namely flat discharge plateaus, an output voltage exceeding 1.3 V, and theoretical capacities of both electrodes higher than 100 mA h g?1. Both organic electrode materials are synthesized in two respective three synthetic steps using the free‐radical polymerization technique. Li‐organic batteries manufactured from these polymers prove their suitability as organic electrode materials. The cathode material poly(2‐vinylthianthrene) (3) displays a discharging plateau at 3.95 V versus Li+/Li and a discharge capacity of 105 mA h g?1, corresponding to a specific energy of about 415 mW h g?1. The anode material poly(2‐methacrylamide‐TCAQ) (7) exhibits an initial discharge capacity of 130 mA h g?1, corresponding to 94% material activity. The combination of both materials results in an all‐organic battery with a discharge voltage of 1.35 V and an initial discharge capacity of 105 mA h g?1 (95% material activity).  相似文献   

3.
Although the rechargeable lithium–oxygen (Li–O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon‐based air‐electrode, Li metal anode, and electrodes, toward reduced oxygen species. Here a simple one‐step in situ electrochemical precharging strategy is demonstrated to generate thin protective films on both carbon nanotubes (CNTs), air‐electrodes and Li metal anodes simultaneously under an inert atmosphere. Li–O2 cells after such pretreatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity‐limited protocol of 1000 mA h g?1 and 500 mA h g?1, respectively, which is far more than those without pretreatment. The thin‐films formed from decomposition of electrolyte during in situ electrochemical precharging processes in an inert environment, can protect both CNTs air‐electrode and Li metal anode prior to conventional Li–O2 discharge/charge cycling, where reactive reduced oxygen species are formed. This work provides a new approach for protection of carbon‐based air‐electrodes and Li metal anodes in practical Li–O2 batteries, and may also be applied to other battery systems.  相似文献   

4.
Due to an ever‐increasing demand for electronic devices, rechargeable batteries are attractive for energy storage systems. A novel rechargeable aluminum‐ion battery based on Al3+ intercalation and deintercalation is fabricated with Ni3S2/graphene microflakes composite as cathode material and high‐purity Al foil as anode. This kind of aluminum‐ion battery comprises of an electrolyte containing AlCl3 in an ionic liquid of 1‐ethyl‐3‐methylimidazolium chloride ([EMIm]Cl). Galvanostatic charge/discharge measurements have been performed in a voltage range of 0.1–2.0 V versus Al/AlCl4 ?. An initial discharge specific capacity of 350 mA h g?1 at a current density of 100 mA g?1 is achieved, and the discharge capacity remains over 60 mA h g?1 and coulombic efficiency of 99% after 100 cycles. Typically, for the current density at 200 mA g?1, the initial charge and discharge capacities are 300 and 235 mA h g?1, respectively. More importantly, it should be emphasized that the battery has a high discharge voltage plateau (≈1.0 V vs Al/AlCl4 ?). These meaningful results represent a significant step forward in the development of aluminum‐ion batteries.  相似文献   

5.
Lithium‐air (Li‐air) batteries have become attractive because of their extremely high theoretical energy density. However, conventional Li‐air cells operating with non‐aqueous electrolytes suffer from poor cycle life and low practical energy density due to the clogging of the porous air cathode by insoluble discharge products, contamination of the organic electrolyte and lithium metal anode by moist air, and decomposition of the electrolyte during cycling. These difficulties may be overcome by adopting a cell configuration that consists of a lithium‐metal anode protected from air by a Li+‐ion solid electrolyte and an air electrode in an aqueous catholyte. In this type of configuration, a Li+‐ion conducting “buffer” layer between the lithium‐metal anode and the solid electrolyte is often necessary due to the instability of many solid electrolytes in contact with lithium metal. Based on the type of buffer layer, two different battery configurations are possible: “hybrid” Li‐air batteries and “aqueous” Li‐air batteries. The hybrid and aqueous Li‐air batteries utilize the same battery chemistry and face similar challenges that limit the cell performance. Here, an overview of recent developments in hybrid and aqueous Li‐air batteries is provided and the factors that influence their performance and impede their practical applications, followed by future directions are discussed.  相似文献   

6.
Thin solid‐state electrolytes with nonflammability, high ionic conductivity, low interfacial resistance, and good processability are urgently required for next‐generation safe, high energy density lithium metal batteries. Here, a 3D Li6.75La3Zr1.75Ta0.25O12 (LLZTO) self‐supporting framework interconnected by polytetrafluoroethylene (PTFE) binder is prepared through a simple grinding method without any solvent. Subsequently, a garnet‐based composite electrolyte is achieved through filling the flexible 3D LLZTO framework with a succinonitrile solid electrolyte. Due to the high content of garnet ceramic (80.4 wt%) and high heat‐resistance of the PTFE binder, such a composite electrolyte film with nonflammability and high processability exhibits a wide electrochemical window of 4.8 V versus Li/Li+ and high ionic transference number of 0.53. The continuous Li+ transfer channels between interconnected LLZTO particles and succinonitrile, and the soft electrolyte/electrode interface jointly contribute to a high ambient‐temperature ionic conductivity of 1.2 × 10?4 S cm?1 and excellent long‐term stability of the Li symmetric battery (stable at a current density of 0.1 mA cm?2 for over 500 h). Furthermore, as‐prepared LiFePO4|Li and LiNi0.5Mn0.3Co0.2O2|Li batteries based on the thin composite electrolyte exhibit high discharge specific capacities of 153 and 158 mAh g?1 respectively, and desirable cyclic stabilities at room temperature.  相似文献   

7.
The symmetric batteries with an electrode material possessing dual cathodic and anodic properties are regarded as an ideal battery configuration because of their distinctive advantages over the asymmetric batteries in terms of fabrication process, cost, and safety concerns. However, the development of high‐performance symmetric batteries is highly challenging due to the limited availability of suitable symmetric electrode materials with such properties of highly reversible capacity. Herein, a triple‐hollow‐shell structured V2O5 (THS‐V2O5) symmetric electrode material with a reversible capacity of >400 mAh g?1 between 1.5 and 4.0 V and >600 mAh g?1 between 0.1 and 3.0 V, respectively, when used as the cathode and anode, is reported. The THS‐V2O5 electrodes assembled symmetric full lithium‐ion battery (LIB) exhibits a reversible capacity of ≈290 mAh g?1 between 2 and 4.0 V, the best performed symmetric energy storage systems reported to date. The unique triple‐shell structured electrode makes the symmetric LIB possessing very high initial coulombic efficiency (94.2%), outstanding cycling stability (with 94% capacity retained after 1000 cycles), and excellent rate performance (over 140 mAh g?1 at 1000 mA g?1). The demonstrated approach in this work leaps forward the symmetric LIB performance and paves a way to develop high‐performance symmetric battery electrode materials.  相似文献   

8.
A cathode‐flow lithium‐iodine (Li–I) battery is proposed operating by the triiodide/iodide (I3?/I?) redox couple in aqueous solution. The aqueous Li–I battery has noticeably high energy density (≈0.28 kWh kg?1cell) because of the considerable solubility of LiI in aqueous solution (≈8.2 m ) and reasonably high power density (≈130 mW cm?2 at a current rate of 60 mA cm?2, 328 K). In the operation of cathode‐flow mode, the Li–I battery attains high storage capacity (≈90% of the theoretical capacity), Coulombic efficiency (100% ± 1% in 2–20 cycles) and cyclic performance (>99% capacity retention for 20 cycles) up to total capacity of 100 mAh.  相似文献   

9.
Li‐rich layered materials are considered to be the promising low‐cost cathodes for lithium‐ion batteries but they suffer from poor rate capability despite of efforts toward surface coating or foreign dopings. Here, spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres are reported as a new high‐rate cathode material for Li‐ion batteries. The synthetic procedure is relatively simple, involving the formation of uniform carbonate precursor under solvothermal conditions and its subsequent transformation to an assembled microsphere that integrates a spinel‐like component with a layered component by a heat treatment. When calcined at 700 °C, the amount of transition metal Mn and Co in the Li‐Mn‐Co‐O microspheres maintained is similar to at 800 °C, while the structures of constituent particles partially transform from 2D to 3D channels. As a consequence, when tested as a cathode for lithium‐ion batteries, the spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres obtained at 700 °C show a maximum discharge capacity of 185.1 mA h g?1 at a very high current density of 1200 mA g?1 between 2.0 and 4.6 V. Such a capacity is among the highest reported to date at high charge‐discharge rates. Therefore, the present spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres represent an attractive alternative to high‐rate electrode materials for lithium‐ion batteries.  相似文献   

10.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

11.
Amongst post‐Li‐ion battery technologies, lithium–sulfur (Li–S) batteries have captured an immense interest as one of the most appealing devices from both the industrial and academia sectors. The replacement of conventional liquid electrolytes with solid polymer electrolytes (SPEs) enables not only a safer use of Li metal (Li°) anodes but also a flexible design in the shape of Li–S batteries. However, the practical implementation of SPEs‐based all‐solid‐state Li–S batteries (ASSLSBs) is largely hindered by the shuttling effect of the polysulfide intermediates and the formation of dendritic Li° during the battery operation. Herein, a fluorine‐free noble salt anion, tricyanomethanide [C(CN)3?, TCM?], is proposed as a Li‐ion conducting salt for ASSLSBs. Compared to the widely used perfluorinated anions {e.g., bis(trifluoromethanesulfonyl)imide anion, [N(SO2CF3)2)]?, TFSI?}, the LiTCM‐based electrolytes show decent ionic conductivity, good thermal stability, and sufficient anodic stability suiting the cell chemistry of ASSLSBs. In particular, the fluorine‐free solid electrolyte interphase layer originating from the decomposition of LiTCM exhibits a good mechanical integrity and Li‐ion conductivity, which allows the LiTCM‐based Li–S cells to be cycled with good rate capability and Coulombic efficiency. The LiTCM‐based electrolytes are believed to be the most promising candidates for building cost‐effective and high energy density ASSLSBs in the near future.  相似文献   

12.
A flexible and free‐standing porous carbon nanofibers/selenium composite electrode (Se@PCNFs) is prepared by infiltrating Se into mesoporous carbon nanofibers (PCNFs). The porous carbon with optimized mesopores for accommodating Se can synergistically suppress the active material dissolution and provide mechanical stability needed for the film. The Se@PCNFs electrode exhibits exceptional electrochemical performance for both Li‐ion and Na‐ion storage. In the case of Li‐ion storage, it delivers a reversible capacity of 516 mAh g?1 after 900 cycles without any capacity loss at 0.5 A g?1. Se@PCNFs still delivers a reversible capacity of 306 mAh g?1 at 4 A g?1. While being used in Na‐Se batteries, the composite electrode maintains a reversible capacity of 520 mAh g?1 after 80 cycles at 0.05 A g?1 and a rate capability of 230 mAh g?1 at 1 A g?1. The high capacity, good cyclability, and rate capability are attributed to synergistic effects of the uniform distribution of Se in PCNFs and the 3D interconnected PCNFs framework, which could alleviate the shuttle reaction of polyselenides intermediates during cycling and maintain the perfect electrical conductivity throughout the electrode. By rational and delicate design, this type of self‐supported electrodes may hold great promise for the development of Li‐Se and Na‐Se batteries with high power and energy densities.  相似文献   

13.
High energy density at high power density is still a challenge for the current Li‐ion capacitors (LICs) due to the mismatch of charge‐storage capacity and electrode kinetics between capacitor‐type cathode and battery‐type anode. In this work, B and N dual‐doped 3D porous carbon nanofibers are prepared through a facile method as both capacitor‐type cathode and battery‐type anode for LICs. The B and N dual doping has profound effect in tuning the porosity, functional groups, and electrical conductivity for the porous carbon nanofibers. With rational design, the developed B and N dual‐doped carbon nanofibers (BNC) exhibit greatly improved electrochemical performance as both cathode and anode for LICs, which greatly alleviates the mismatch between the two electrodes. For the first time, a 4.5 V “dual carbon” BNC//BNC LIC device is constructed and demonstrated, exhibiting outstanding energy density and power capability compared to previously reported LICs with other configurations. In specific, the present BNC//BNC LIC device can deliver a large energy density of 220 W h kg?1 and a high power density of 22.5 kW kg?1 (at 104 W h kg?1) with reasonably good cycling stability (≈81% retention after 5000 cycles).  相似文献   

14.
Li‐O2 batteries are promising next‐generation energy storage systems because of their exceptionally high energy density (≈3500 W h kg?1). However, to achieve stable operation, grand challenges remain to be resolved, such as preventing electrolyte decomposition and degradation of carbon, a commonly used air electrode in Li‐O2 batteries. In this work, using in situ differential electrochemical mass spectrometry, it is demonstrated that the application of a ZnO coating on the carbon electrode can effectively suppress side reactions occurring in the Li‐O2 battery. By probing the CO2 evolution during charging of 13C‐labeled air electrodes, the major sources of parasitic reactions are precisely identified, which further reveals that the ZnO coating retards the degradation of both the carbon electrode and electrolyte. The successful suppression of the degradation results in a higher oxygen efficiency, leading to enhanced stability for more than 100 cycles. Nevertheless, the degradation of the carbon electrode is not completely prevented by the coating, because the Li2O2 discharge product gradually grows at the interface between the ZnO and carbon, which eventually results in detachment of the ZnO particles from the electrode and subsequent deterioration of the performance. This finding implies that surface protection of the carbon electrode is a viable option to enhance the stability of Li‐O2 batteries; however, fundamental studies on the growth mechanism of the discharge product on the carbon surface are required along with more effective coating strategies.  相似文献   

15.
Herein, a two‐species redox reaction of Co(II)/Co(III) and Fe(II)/Fe(III) incorporated in cobalt hexacyanoferrate (CoFe(CN)6) is proposed as a breakthrough to achieve jointly high‐capacity and high‐voltage aqueous Zn‐ion battery. The Zn/CoFe(CN)6 battery provides a highly operational voltage plateau of 1.75 V (vs metallic Zn) and a high capacity of 173.4 mAh g?1 at current density of 0.3 A g?1, taking advantage of the two‐species redox reaction of Co(II)/Co(III) and Fe(II)/Fe(III) couples. Even under extremely fast charge/discharge rate of 6 A g?1, the battery delivers a sufficiently high discharge capacity of 109.5 mAh g?1 with its 3D opened structure framework. This is the highest capacity delivered among all the batteries using Prussian blue analogs (PBAs) cathode up to now. Furthermore, Zn/CoFe(CN)6 battery achieves an excellent cycling performance of 2200 cycles without any capacity decay at coulombic efficiency of nearly 100%. One further step, a sol–gel transition strategy for hydrogel electrolyte is developed to construct high‐performance flexible cable‐type battery. With the strategy, the active materials can adequately contact with electrolyte, resulting in improved electrochemical performance (≈18.73% capacity increase) and mechanical robustness of the solid‐state device. It is believed that this study optimizes electrodes by incorporating multi redox reaction species for high‐voltage and high‐capacity batteries.  相似文献   

16.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   

17.
High‐performance flexible batteries are promising energy storage devices for portable and wearable electronics. Currently, the major obstacle to develop flexible batteries is the shortage of flexible electrodes with excellent electrochemical performance. Another challenge is the limited progress in the flexible batteries beyond Li‐ion because of a safety concern for the Li‐based electrochemical system. In this work, a self‐supported tin sulfide (SnS) porous film (PF) is fabricated as a flexible cathode material in an Al‐ion battery, which delivers a high specific capacity of 406 mAh g?1. A capacity decay rate of 0.03% per cycle is achieved, indicating a good stability. The self‐supported and flexible SnS film also shows an outstanding electrochemical performance and stability during dynamic and static bending tests. In situ transmission electron microscopy demonstrates that the porous structure of SnS is beneficial for minimizing the volume expansion during charge/discharge. This leads to an improved structural stability and superior long‐term cyclability.  相似文献   

18.
Zinc is recently gaining interest in the battery community as potential alternative anode material, because of its large natural abundance and potentially larger volumetric density than graphite. Nevertheless, pure Zn anodes have shown so far very poor cycling performance. Here, the electrochemical performance of Zn‐rich porous Cu–Zn alloys electrodeposited by an environmentally friendly (aqueous) dynamic hydrogen bubble template method is reported. The lithiation/delithiation mechanism is studied in detail by both in situ and ex situ X‐ray diffraction, indicating the reversible displacement of Zn from the Cu–Zn alloy upon reaction with Li. The influence of the alloy composition on the performance of carbon‐ and binder‐free electrodes is also investigated. The optimal Cu:Zn atomic ratio is found to be 18:82, which provides impressive rate capability up to 10 A g?1 (≈30C), and promising capacity retention upon more than 500 cycles. The high electronic conductivity provided by Cu, and the porous electrode morphology also enable superior lithium storage capability at low temperature. Cu18Zn82 can indeed steadily deliver ≈200 mAh g?1 at ?20 °C, whereas an analogous commercial graphite electrode rapidly fades to only 12 mAh g?1.  相似文献   

19.
Based on a liquid metal (eutectic alloy with 90 wt% gallium and 10 wt% indium) anode, a soft, highly elastic, discharge‐current‐controllable, cable‐shaped liquid metal–air battery operated at 25 °C, with effective reactions of Ga ? 3e? → Ga3+ and O2 + 2H2O + 4e? → 4OH? is presented. In the liquid metal electrode, indium is used not only to inhibit the corrosion of gallium in the alkaline electrolyte but also to maintain the liquid state of the anode at room temperature. Thus, the liquid anode can be easily injected into (or extracted from) the battery cavity, leading to an easily renewable anode. In addition, the cable‐shaped battery shows a pressure‐responsive discharge current, owing to the soft, deformable battery body. Due to the liquid anode and flexible carbon fiber‐based cathode, the battery is highly flexible (bending radius < 1 mm) and easily recovers from any degree of bending without electrochemical performance impairment. With its elastic polyacrylic acid‐based gel electrolyte, the battery shows high elasticity, stretching by up to 100% (from 12 to 24 cm), excellent shape recovery from stretched states, and a discharge performance retention of 98.87%. Moreover, this paper provides the possibility to develop a deformable battery based on the liquid metal material.  相似文献   

20.
LiNixMnyCo1?x?yO2 (NMC) cathode materials with Ni ≥ 0.8 have attracted great interest for high energy‐density lithium‐ion batteries (LIBs) but their practical applications under high charge voltages (e.g., 4.4 V and above) still face significant challenges due to severe capacity fading by the unstable cathode/electrolyte interface. Here, an advanced electrolyte is developed that has a high oxidation potential over 4.9 V and enables NMC811‐based LIBs to achieve excellent cycling stability in 2.5–4.4 V at room temperature and 60 °C, good rate capabilities under fast charging and discharging up to 3C rate (1C = 2.8 mA cm?2), and superior low‐temperature discharge performance down to ?30 °C with a capacity retention of 85.6% at C/5 rate. It is also demonstrated that the electrode/electrolyte interfaces, not the electrolyte conductivity and viscosity, govern the LIB performance. This work sheds light on a very promising strategy to develop new electrolytes for fast‐charging high‐energy LIBs in a wide‐temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号