共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Joonam Park Kyu Tae Kim Dae Yang Oh Dahee Jin Dohwan Kim Yoon Seok Jung Yong Min Lee 《Liver Transplantation》2020,10(35)
The digital twin technique has been broadly utilized to efficiently and effectively predict the performance and problems associated with real objects via a virtual replica. However, the digitalization of twin electrochemical systems has not been achieved thus far, owing to the large amount of required calculations of numerous and complex differential equations in multiple dimensions. Nevertheless, with the help of continuous progress in hardware and software technologies, the fabrication of a digital twin‐driven electrochemical system and its effective utilization have become a possibility. Herein, a digital twin‐driven all‐solid‐state battery with a solid sulfide electrolyte is built based on a voxel‐based microstructure. Its validity is verified using experimental data, such as effective electronic/ionic conductivities and electrochemical performance, for LiNi0.70Co0.15Mn0.15O2 composite electrodes employing Li6PS5Cl. The fundamental performance of the all‐solid‐state battery is scrutinized by analyzing simulated physical and electrochemical behaviors in terms of mass transport and interfacial electrochemical reaction kinetics. The digital twin model herein reveals valuable but experimentally inaccessible time‐ and space‐resolved information including dead particles, specific contact area, and charge distribution in the 3D domain. Thus, this new computational model is bound to rapidly improve the all‐solid‐state battery technology by saving the research resources and providing valuable insights. 相似文献
4.
5.
The nickel matrix has a significant impact on the structure and performance of a nickel–metal hydride (NiMH) battery. However, few studies have focused on the nickel matrix thus far due to the difficulty of fabricating controllable porous nickel materials. In addition, conventional nickel matrices show poor flexibility, making it difficult to fabricate flexible NiMH batteries. To achieve a high performance flexible NiMH battery, the fabrication of a thin, free‐standing, and flexible nickel matrix with an optimized pore structure is a key prerequisite. Here, a novel flexible porous nickel matrix with a controllable pore size, density, and distribution of pore position is developed by nickel electrodeposition on templates that are produced by silkscreen printing different insulating ink microarrays on stainless steel sheets. Benefitting from the excellent structure of the porous nickel matrix, flexible NiMH batteries are fabricated, which show excellent flexibility and very high energy densities of 151.8 W h kg?1 and 508.5 W h L?1 as well as high energy efficiencies of 87.9–98.5%. These batteries outperform conventional NiMH batteries and many other commercial batteries, holding great promise for their future practical application. The present strategy provides a new route to promote the development of nickel‐based alkaline rechargeable batteries. 相似文献
6.
Dae Yang Oh Young Jin Nam Kern Ho Park Sung Hoo Jung Kyu Tae Kim A. Reum Ha Yoon Seok Jung 《Liver Transplantation》2019,9(16)
For mass production of all‐solid‐state lithium‐ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet‐slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates for solvents and in turn polymeric binders. Moreover, the binders interrupt Li+‐ionic contacts at interfaces, resulting in the below par electrochemical performance. In this work, a new scalable slurry fabrication protocol for sheet‐type ASLB electrodes made of Li+‐conductive polymeric binders is reported. The use of intermediate‐polarity solvent (e.g., dibromomethane) for the slurry allows for accommodating Li6PS5Cl and solvate‐ionic‐liquid‐based polymeric binders (NBR‐Li(G3)TFSI, NBR: nitrile?butadiene rubber, G3: triethylene glycol dimethyl ether, LiTFSI: lithium bis(trifluoromethanesulfonyl)imide) together without suffering from undesirable side reactions or phase separation. The LiNi0.6Co0.2Mn0.2O2 and Li4Ti5O12 electrodes employing NBR‐Li(G3)TFSI show high capacities of 174 and 160 mA h g?1 at 30 °C, respectively, which are far superior to those using conventional NBR (144 and 76 mA h g?1). Moreover, high areal capacity of 7.4 mA h cm?2 is highlighted for the LiNi0.7Co0.15Mn0.15O2 electrodes with ultrahigh mass loading of 45 mg cm?2. The facilitated Li+‐ionic contacts at interfaces paved by NBR‐Li(G3)TFSI are evidenced by the complementary analysis from electrochemical and 7Li nuclear magnetic resonance measurements. 相似文献
7.
Sung Hoo Jung Un‐Hyuck Kim Jae‐Hyung Kim Seunggoo Jun Chong S. Yoon Yoon Seok Jung Yang‐Kook Sun 《Liver Transplantation》2020,10(6)
While Ni‐rich cathode materials combined with highly conductive and mechanically sinterable sulfide solid electrolytes are imperative for practical all‐solid‐state Li batteries (ASLBs), they suffer from poor performance. Moreover, the prevailing wisdom regarding the use of Li[Ni,Co,Mn]O2 in conventional liquid electrolyte cells, that is, increased capacity upon increased Ni content, at the expense of degraded cycling stability, has not been applied in ASLBs. In this work, the effect of overlooked but dominant electrochemo‐mechanical on the performance of Ni‐rich cathodes in ASLBs are elucidated by complementary analysis. While conventional Li[Ni0.80Co0.16Al0.04]O2 (NCA80) with randomly oriented grains is prone to severe particle disintegration even at the initial cycle, the radially oriented rod‐shaped grains in full‐concentration gradient Li[Ni0.75Co0.10Mn0.15]O2 (FCG75) accommodate volume changes, maintaining mechanical integrity. This accounts for their different performance in terms of reversible capacity (156 vs 196 mA h g?1), initial Coulombic efficiency (71.2 vs 84.9%), and capacity retention (46.9 vs 79.1% after 200 cycles) at 30 °C. The superior interfacial stability for FCG75/Li6PS5Cl to for NCA80/Li6PS5Cl is also probed. Finally, the reversible operation of FCG75/Li ASLBs is demonstrated. The excellent performance of FCG75 ranks at the highest level in the ASLB field. 相似文献
8.
Jonathan Lau Ryan H. DeBlock Danielle M. Butts David S. Ashby Christopher S. Choi Bruce S. Dunn 《Liver Transplantation》2018,8(27)
The use of solid electrolytes is a promising direction to improve the energy density of lithium‐ion batteries. However, the low ionic conductivity of many solid electrolytes currently hinders the performance of solid‐state batteries. Sulfide solid electrolytes can be processed in a number of forms (glass, glass‐ceramic, and crystalline) and have a wide range of available chemistries. Crystalline sulfide materials demonstrate ionic conductivity on par with those of liquid electrolytes through the utilization of near ideal conduction pathways. Low‐temperature processing is also possible for these materials due to their favorable mechanical properties. The main drawback of sulfide solid electrolytes remains their electrochemical stability, but this can be addressed through compositional tuning or the use of artificial solid electrolyte interphase (SEI). Implementation of sulfide solid electrolytes, with proper treatment for stability, can lead to substantial improvements in solid‐state battery performance leading to significant advancement in electric vehicle technology. 相似文献
9.
Yigang Yan Ruben‐Simon Kühnel Arndt Remhof Léo Duchêne Eduardo Cuervo Reyes Daniel Rentsch Zbigniew Łodziana Corsin Battaglia 《Liver Transplantation》2017,7(19)
High ionic conductivity of up to 6.4 × 10?3 S cm?1 near room temperature (40 °C) in lithium amide‐borohydrides is reported, comparable to values of liquid organic electrolytes commonly employed in lithium‐ion batteries. Density functional theory is applied coupled with X‐ray diffraction, calorimetry, and nuclear magnetic resonance experiments to shed light on the conduction mechanism. A Li4Ti5O12 half‐cell battery incorporating the lithium amide‐borohydride electrolyte exhibits good rate performance up to 3.5 mA cm?2 (5 C) and stable cycling over 400 cycles at 1 C at 40 °C, indicating high bulk and interfacial stability. The results demonstrate the potential of lithium amide‐borohydrides as solid‐state electrolytes for high‐power lithium‐ion batteries. 相似文献
10.
George Hasegawa Kazuyoshi Kanamori Tsutomu Kiyomura Hiroki Kurata Kazuki Nakanishi Takeshi Abe 《Liver Transplantation》2015,5(1)
Integrated design of both porous structure and crystalline morphology is expected to open up the way to a new class of materials. This report demonstrates new nanostructured Li4Ti5O12 materials with hierarchically porous structures and flower‐like morphologies. Electrochemical studies of the electrodes of Li‐ion and Na‐ion batteries clearly reveal the advantage of nanoarchitectural design of active materials. In addition, the temperature dependence of Na+‐insertion/extraction capacity in relation to Li4Ti5O12 electrodes is for the first time evaluated and it is found that elevation of the cell operating temperature effectively improves the rate capability of the Na‐ion batteries. Based on the new findings, it is suggested that specially designed Li4Ti5O12 materials allow for high‐performance Na‐ion batteries that are available as large‐scale storage devices for applications such as automotive and stationary energy storage. 相似文献
11.
The development of all‐solid‐state lithium–sulfur batteries is hindered by the poor interfacial properties at solid electrolyte (SE)/electrode interfaces. The interface is modified by employing the highly concentrated solvate electrolyte, (MeCN)2?LiTFSI:TTE, as an interlayer material at the electrolyte/electrode interfaces. The incorporation of an interlayer significantly improves the cycling performance of solid‐state Li2S batteries compared to the bare counterpart, exhibiting a specific capacity of 760 mAh g?1 at cycle 100 (330 mAh g?1 for the bare cell). Electrochemical impedance spectroscopy shows that the interfacial resistance of the interlayer‐modified cell gradually decreases as a function of cycle number, while the impedance of the bare cell remains almost constant. Cross‐section scanning electron microscopy (SEM)/ energy dispersive X‐ray spectroscopy (EDS) measurements on the interlayer‐modified cell confirm the permeation of solvate into the cathode and the SE with electrochemical cycling, which is related to the decrease in cell impedance. In order to mimic the full permeation of the solvate across the entire cell, the solvate is directly mixed with the SE to form a “solvSEM” electrolyte. The hybrid Li2S cell using a solvSEM electrolyte exhibits superior cycling performance compared to the solid‐state cells, in terms of Li2S loading, Li2S utilization, and cycling stability. The improved performance is due to the favorable ionic contact at the battery interfaces. 相似文献
12.
Linchao Zeng Wencong Zeng Yu Jiang Xiang Wei Weihan Li Chenglong Yang Yanwu Zhu Yan Yu 《Liver Transplantation》2015,5(4)
A flexible and free‐standing porous carbon nanofibers/selenium composite electrode (Se@PCNFs) is prepared by infiltrating Se into mesoporous carbon nanofibers (PCNFs). The porous carbon with optimized mesopores for accommodating Se can synergistically suppress the active material dissolution and provide mechanical stability needed for the film. The Se@PCNFs electrode exhibits exceptional electrochemical performance for both Li‐ion and Na‐ion storage. In the case of Li‐ion storage, it delivers a reversible capacity of 516 mAh g?1 after 900 cycles without any capacity loss at 0.5 A g?1. Se@PCNFs still delivers a reversible capacity of 306 mAh g?1 at 4 A g?1. While being used in Na‐Se batteries, the composite electrode maintains a reversible capacity of 520 mAh g?1 after 80 cycles at 0.05 A g?1 and a rate capability of 230 mAh g?1 at 1 A g?1. The high capacity, good cyclability, and rate capability are attributed to synergistic effects of the uniform distribution of Se in PCNFs and the 3D interconnected PCNFs framework, which could alleviate the shuttle reaction of polyselenides intermediates during cycling and maintain the perfect electrical conductivity throughout the electrode. By rational and delicate design, this type of self‐supported electrodes may hold great promise for the development of Li‐Se and Na‐Se batteries with high power and energy densities. 相似文献
13.
Hussein Melhem Pardis Simon Layla Beouch Fabrice Goubard Mourad Boucharef Catherine Di Bin Yann Leconte Bernard Ratier Nathalie Herlin‐Boime Johann Bouclé 《Liver Transplantation》2011,1(5):908-916
A crucial issue regarding emerging nanotechnologies remains the up‐scaling of new functional nanostructured materials towards their implementation in high performance applications on a large scale. In this context, we demonstrate high efficiency solid‐state dye‐sensitized solar cells prepared from new porous TiO2 photoanodes based on laser pyrolysis nanocrystals. This strategy exploits a reduced number of processing steps as well as non‐toxic chemical compounds to demonstrate highly porous TiO2 films. The possibility to easily tune the TiO2 nanocrystal physical properties allows us to demonstrate all solid‐state dye‐sensitized devices based on a commercial benchmark materials (organic indoline dye and molecular hole transporter) presenting state‐of‐the‐art performance comparable with reference devices based on a commercial TiO2 paste. In particular, a drastic improvement in pore infiltration, which is found to balance a relatively lower surface area compared to the reference electrode, is evidenced using laser‐synthesized nanocrystals resulting in an improved short‐circuit current density under full sunlight. Transient photovoltage decay measurements suggest that charge recombination kinetics still limit device performance. However, the proposed strategy emphasizes the potentialities of the laser pyrolysis technique for up‐scaling nanoporous TiO2 electrodes for various applications, especially for solar energy conversion. 相似文献
14.
The electrodes in energy storage devices, such as lithium/sodium ion batteries, are typical multicomponent system consisting of inorganic electrode particles, polymer binders, conductive fillers, current collectors, and other components. These components are usually porously combined by a polymeric binder to accomplish the required electrochemical functions. In spite of the great success, this classic porous configuration faces serious issues in mechanical stability and flexibility due to weak and instable structures/interfaces. Here, by learning from polymeric nanocomposites, a concept of electrode matrix is proposed based on a gum‐like nanocomposite, a dual‐conductive adhesive. As an electrode matrix, the gum‐like nanocomposite integrates the functions of binder, electrolyte, and conductive fillers. In particular, it shows strong adhesion, high electrical/ionic conductivities, and appropriate mechanical and self‐healing properties. Finally, it is demonstrated that, with the electrode matrix, battery electrodes can be fabricated into nonporous composite showing not only excellent mechanical flexibility/stability but also improved electrochemical performance when working with a gum‐like electrolyte. 相似文献
15.
Yuepeng Pang Xitong Wang Xinxin Shi Fen Xu Lixian Sun Junhe Yang Shiyou Zheng 《Liver Transplantation》2020,10(12)
Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li3AlH6‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH4 and Li with the help of fast electron and Li‐ion conductors (C and P63mc LiBH4). This nanocomposite consists of dispersive Al nanograins and an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g?1), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g?1 at 1 A g?1) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li3AlH6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior. 相似文献
16.
17.
Afriyanti Sumboja Mechthild Lübke Yong Wang Tao An Yun Zong Zhaolin Liu 《Liver Transplantation》2017,7(20)
Pliable, safe, and inexpensive energy storage devices are in demand to power modern flexible electronics. In this work, a foldable battery based on a solid‐state and rechargeable Zn‐air battery is introduced. The air cathode is prepared by coating graphene flakes on pretreated carbon cloth to form a dense, interconnected, and conducting carbon network. Manganese oxide hierarchical nanostructures are subsequently grown on the large surface area carbon network, leading to high loading of active catalyst per unit volume while maintaining the mechanical and electrical integrity of the air cathode. Solid‐state and rechargeable Zn‐air battery with such air cathode exhibits similar polarization curve and resistance at its flat and folded states. The folded battery is able to deliver a power density as high as ≈32 mW cm?2 and good cycling stability of up to 110 cycles. In addition, the flat battery shows similar discharge/charge curve and stable cycling performance after 100 times of repeated folding and unfolding, indicating its high mechanical robustness. 相似文献
18.
Zhizhen Zhang Qinghua Zhang Jinan Shi Yong S. Chu Xiqian Yu Kaiqi Xu Mingyuan Ge Hanfei Yan Wenjun Li Lin Gu Yong‐Sheng Hu Hong Li Xiao‐Qing Yang Liquan Chen Xuejie Huang 《Liver Transplantation》2017,7(4)
Replacing organic liquid electrolyte with inorganic solid electrolytes (SE) can potentially address the inherent safety problems in conventional rechargeable batteries. However, solid‐state batteries (SSBs) have been plagued by the relatively low ionic conductivity of SEs and large charge‐transfer resistance between electrode and SE. Here, a new design strategy is reported for improving the ionic conductivity of SE by self‐forming a composite material. An optimized Na+ ion conducting composite electrolyte derived from the Na1+ n Zr2Si n P3? n O12 NASICON (Na Super Ionic Conductor) structure is successfully synthesized, yielding ultrahigh ionic conductivity of 3.4 mS cm?1 at 25 °C and 14 mS cm?1 at 80 °C. On the other hand, in order to enhance the charge‐transfer rate at the electrode/electrolyte interface, an interface modification strategy is demonstrated by utilization of a small amount of nonflammable and nonvolatile ionic liquid (IL) at the cathode side in SSBs. The IL acts as a wetting agent, enabling a favorable interface kinetic in SSBs. The Na3V2(PO4)3/IL/SE/Na SSB exhibits excellent cycle performance and rate capability. A specific capacity of ≈90 mA h g?1 is maintained after 10 000 cycles without capacity decay under 10 C rate at room temperature. This provides a new perspective to design fast ion conductors and fabricate long life SSBs. 相似文献
19.
20.
Johannes Betz Georg Bieker Paul Meister Tobias Placke Martin Winter Richard Schmuch 《Liver Transplantation》2019,9(6)
Electrochemical energy storage at a large scale poses one of the main technological challenges of this century. The scientific community in academia and industry worldwide intensively is exploring various alternative rechargeable battery concepts beside state‐of‐the‐art lithium ion batteries (LIBs), for example, all‐solid‐state batteries, lithium/sulfur batteries, magnesium/sulfur batteries or dual‐ion batteries that could outperform LIBs in different aspects. Often, these concepts also promise very high theoretical energies per mass or volume. However, as theoretical values exclude numerous relevant parameters, they do not translate directly into practically achievable energy values: The gaps between practical capacities and voltages compared to the theoretical values differ for each system. In order to provide high transparency and to illustrate which cell components are most important in the limitation of the practical energy values, in this study, the specific energies and energy densities are calculated in six subsequent steps—from the theoretical energy values of the active materials alone to the practical energy values in an 18650 cylindrical cell. By providing a tool to calculate the energy values of six different battery technologies with different assumptions made evident, this study aims for more transparency and reliability in the comparison of different cell chemistries. 相似文献