首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, the metal sulfide‐carbon nanocomposites have been suggested as a low‐cost alternative to lithium ion batteries, but commercial application is seriously hindered by their relatively inferior cyclic performance. Herein, N and S vacancies in an N,S co‐doped carbon (NSC) shell for anchoring a new bimetallic sulfide core of Co6Ni3S8 using Co‐Ni‐alginate biomass are introduced. The obtained Co6Ni3S8/carbon aerogels (Co6Ni3S8/NSCA) exhibit excellent sodium‐ion storage properties, high reversible capacity (568.1 mAh g?1 at 1 A g?1), and an excellent cycle stability (94.4% after 300 cycles). Density functional theory calculation results disclose that nitrogen and sulfur vacancies in the carbon shell can enhance the binding between the Co6Ni3S8 core and NSC shell, ensuring an improved structural and electrochemical stability. In addition, an increased adsorption energy of Na+ (?1.88 eV) and a decreased barrier energy for Na+ diffusion (0.46 eV) are observed indicating a fast Na+ diffusion process. The powder X‐ray diffraction refinement confirms that the lattice parameters of Co6Ni3S8 extend to 0.9972 nm compared with Co9S8 (0.9928 nm), suppressing the volume expansion in Na+ diffusion processes.  相似文献   

2.
Sodium ion batteries (SIBs) have drawn significant attention owing to their low cost and inherent safety. However, the absence of suitable anode materials with high rate capability and long cycling stability is the major challenge for the practical application of SIBs. Herein, an efficient anode material consisting of uniform hollow iron sulfide polyhedrons with cobalt doping and graphene wrapping (named as CoFeS@rGO) is developed for high‐rate and long‐life SIBs. The graphene‐encapsulated hollow composite assures fast and continuous electron transportation, high Na+ ion accessibility, and strong structural integrity, showing an extremely small volume expansion of only 14.9% upon sodiation and negligible volume contraction during the desodiation. The CoFeS@rGO electrode exhibits high specific capacity (661.9 mAh g?1 at 100 mA g?1), excellent rate capability (449.4 mAh g?1 at 5000 mA g?1), and long cycle life (84.8% capacity retention after 1500 cycles at 1000 mA g?1). In situ X‐ray diffraction and selected‐area electron diffraction patterns show that this novel CoFeS@rGO electrode is based on a reversible conversion reaction. More importantly, when coupled with a Na3V2(PO4)3/C cathode, the sodium ion full battery delivers a superexcellent rate capability (496.8 mAh g?1 at 2000 mA g?1) and ≈96.5% capacity retention over 200 cycles at 500 mA g?1 in the 1.0–3.5 V window. This work indicates that the rationally designed anode material is highly applicable for the next generation SIBs with high‐rate capability and long‐term cyclability.  相似文献   

3.
Carbon‐coated van der Waals stacked Sb2S3 nanorods (SSNR/C) are synthesized by facile hydrothermal growth as anodes for sodium ion batteries (SIBs). The sodiation kinetics and phase evolution behavior of the SSNR/C anode during the first and subsequent cycles are unraveled by coupling in situ transmission electron microscopy analysis with first‐principles calculations. During the first sodiation process, Na+ ions intercalate into the Sb2S3 crystals with an ultrafast speed of 146 nm s?1. The resulting amorphous Nax Sb2S3 intermediate phases undergo sequential conversion and alloying reactions to form crystalline Na2S, Na3Sb, and minor metallic Sb. Upon desodiation, Na+ ions extract from the nanocrystalline phases to leave behind the fully desodiated Sb2S3 in an amorphous state. Such unique phase evolution behavior gives rise to superb electrochemical performance and leads to an unexpectedly small volume expansion of ≈54%. The first‐principles calculations reveal distinctive phase evolution arising from the synergy between the extremely low Na+ ion diffusion barrier of 190 meV and the sharply increased electronic conductivity upon the formation of amorphous Nax Sb2S3 intermediate phases. These findings highlight an anomalous Na+ ion storage mechanism and shed new light on the development of high performance SIB anodes based on van der Waals crystals.  相似文献   

4.
Herein, a new P2‐type layered oxide is proposed as an outstanding intercalation cathode material for high energy density sodium‐ion batteries (SIBs). On the basis of the stoichiometry of sodium and transition metals, the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode is synthesized without impurities phase by partially substituting Ni and Fe into the Mn sites. The partial substitution results in a smoothing of the electrochemical charge/discharge profiles and thus greatly improves the battery performance. The P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode delivers an extremely high discharge capacity of 221.5 mAh g?1 with a high average potential of ≈2.9 V (vs Na/Na+) for SIBs. In addition, the fast Na‐ion transport in the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode structure enables good power capability with an extremely high current density of 2400 mA g?1 (full charge/discharge in 12 min) and long‐term cycling stability with ≈80% capacity retention after 500 cycles at 600 mA g?1. A combination of electrochemical profiles, in operando synchrotron X‐ray diffraction analysis, and first‐principles calculations are used to understand the overall Na storage mechanism of P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2.  相似文献   

5.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

6.
Sodium‐ion batteries (SIBs) are promising next‐generation alternatives due to the low cost and abundance of sodium sources. Yet developmental electrodes in SIBs such as transition metal sulfides have huge volume expansion, sluggish Na+ diffusion kinetics, and poor electrical conductivity. Here bimetallic sulfide (Co9S8/ZnS) nanocrystals embedded in hollow nitrogen‐doped carbon nanosheets are demonstrated with a high sodium diffusion coefficient, pseudocapacitive effect, and excellent reversibility. Such a unique composite structure is designed and synthesized via a facile sulfidation of the CoZn‐MOFs followed by calcination and is highly dependant on the reaction time and temperature. The optimized Co1Zn1‐S(600) electrode exhibits excellent sodium storage performance, including a high capacity of 542 mA h g?1 at 0.1 A g?1, good rate capability at 10 A g?1, and excellent cyclic stability up to 500 cycles for half‐cell. It also shows potential in full‐cell configuration. Such capabilities will accelerate the adoption of sodium‐ion batteries for electrical energy applications.  相似文献   

7.
The fabrication of ultrasmall and high‐content SnO2 nanocrystals anchored on doped graphene can endow SnO2 with superior electrochemical properties. Herein, an effective strategy, involving molecular engineering of a layer‐by‐layer assembly technique, is proposed to homogeneously anchor SnO2 nanocrystals on nitrogen/sulfur codoped graphene (NSGS), which serves as an advanced anode material in lithium/sodium‐ion batteries (LIBs/SIBs). Benefiting from novel design and specific structure, the optimized NSGS for LIBs displays high initial capacity (2123.9 mAh g?1 at 0.1 A g?1), long‐term cycling performance (only 0.8% loss after 500 cycles), and good rate capability (477.4 mAh g?1 at 5 A g?1). In addition, the optimized NSGS for SIBs also delivers high initial capacity (791.7 mAh g?1 at 0.1 A g?1) and high reversible capacity (180.2 mAh g?1 after 500 cycles at 0.5 A g?1). Meanwhile, based on the detailed analysis of phase transition and electrochemical reaction kinetics, the reaction mechanisms of NSGS in LIBs and SIBs as well as the distinction in LIBs/SIBs are clearly articulated. Notably, to further explore the practical application, Li/Na+ full cells are also assembled by coupling the optimized NSGS anode with LiCoO2 and Na3V2(PO4)3/C cathodes, respectively.  相似文献   

8.
This study demonstrates for the first time a room temperature sodium–sulfur (RT Na–S) full cell assembled based on a pristine hard carbon (HC) anode combined with a nanostructured Na2S/C cathode. The development of cells without the demanding, time‐consuming and costly pre‐sodiation of the HC anode is essential for the realization of practically relevant RT Na–S prototype batteries. New approaches for Na2S/C cathode fabrication employing carbothermal reduction of Na2SO4 at varying temperatures (660 to 1060 °C) are presented. Initial evaluation of the resulting cathodes in a dedicated cell setup reveals 36 stable cycles and a capacity of 740 mAh gS?1, which correlates to ≈85% of the maximum value known from literature on Na2S‐based cells. The Na2S/C cathode with the highest capacity utilization is implemented into a full cell concept applying a pristine HC anode. Various full cell electrolyte compositions with fluoroethylene carbonate (FEC) additive have been combined with a special charging procedure during the first cycle supporting in situ solid electrolyte interphase (SEI) formation on the HC anode to obtain increased cycling stability and cathode utilization. The best performing cell setup has delivered a total of 350 mAh gS?1, representing the first functional full cell based on a Na2S/C cathode and a pristine HC anode today.  相似文献   

9.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

10.
Sodium‐ion batteries (SIBs) have a promising application prospect for energy storage systems due to the abundant resource. Amorphous carbon with high electronic conductivity and high surface area is likely to be the most promising anode material for SIBs. However, the rate capability of amorphous carbon in SIBs is still a big challenge because of the sluggish kinetics of Na+ ions. Herein, a three‐dimensional amorphous carbon (3DAC) with controlled porous and disordered structures is synthesized via a facile NaCl template‐assisted method. Combination of open porous structures of 3DAC, the increased disordered structures can not only facilitate the diffusion of Na+ ions but also enhance the reversible capacity of Na storage. When applied as anode materials for SIBs, 3DAC exhibits excellent rate capability (66 mA h g?1 at 9.6 A g?1) and high reversible capacity (280 mA h g?1 at a low current density of 0.03 A g?1). Moreover, the controlled porous structures by the NaCl template method provide an appropriate specific surface area, which contributes to a relatively high initial Coulombic efficiency of 75%. Additionally, the high‐rate 3DAC material is prepared via a green approach originating from low‐cost pitch and NaCl template, demonstrating an appealing development of carbon anode materials for SIBs.  相似文献   

11.
Sodium (Na) super ion conductor structured Na3V2(PO4)3 (NVP) is extensively explored as cathode material for sodium‐ion batteries (SIBs) due to its large interstitial channels for Na+ migration. The synthesis of 3D graphene‐like structure coated on NVP nanoflakes arrays via a one‐pot, solid‐state reaction in molten hydrocarbon is reported. The NVP nanoflakes are uniformly coated by the in situ generated 3D graphene‐like layers with the thickness of 3 nm. As a cathode material, graphene covered NVP nanoflakes exhibit excellent electrochemical performances, including close to theoretical reversible capacity (115.2 mA h g?1 at 1 C), superior rate capability (75.9 mA h g?1 at 200 C), and excellent cyclic stability (62.5% of capacity retention over 30000 cycles at 50 C). Furthermore, the 3D graphene‐like cages after removing NVP also serve as a good anode material and deliver a specific capacity of 242.5 mA h g?1 at 0.1 A g?1. The full SIB using these two cathode and anode materials delivers a high specific capacity (109.2 mA h g?1 at 0.1 A g?1) and good cycling stability (77.1% capacity retention over 200 cycles at 0.1 A g?1).  相似文献   

12.
As one of the most promising cathode candidates for room‐temperature sodium‐ion batteries (SIBs), P2‐type layered oxides face the challenge of simultaneously realizing high‐rate performance while achieving long cycle life. Here, a stable Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material is proposed that consists of multiple‐layer oriented stacking nanoflakes, in which the nickel sites are partially substituted by copper and magnesium, a characteristic of the material that is confirmed by multiscale scanning transmission electron microscopy and electron energy loss spectroscopy techniques. Owing to the optimal morphology structure modulation and chemical element substitution strategy, the electrode displays remarkable rate performance (73% capacity retention at 30C compared to 0.5C) and outstanding cycling stability in Na half‐cell system couple with unprecedented full battery performance. The underlying thermal stability, phase stability, and Na+ storage mechanisms are clearly elucidated through the systematical characterizations of electrochemical behaviors, in situ X‐ray diffraction at different temperatures, and operando X‐ray diffraction upon Na+ deintercalation/intercalation. Surprisingly, a quasi‐solid‐solution reaction is switched to an absolute solid‐solution reaction and a capacitive Na+ storage mechanism is demonstrated via quantitative electrochemical kinetics calculation during charge/discharge process. Such a simple and effective strategy might reveal a new avenue into the rational design of excellent rate capability and long cycle stability cathode materials for practical SIBs.  相似文献   

13.
The achievement of the superior rate capability and cycling stability is always the pursuit of sodium‐ion batteries (SIBs). However, it is mainly restricted by the sluggish reaction kinetics and large volume change of SIBs during the discharge/charge process. This study reports a facile and scalable strategy to fabricate hierarchical architectures where TiO2 nanotube clusters are coated with the composites of ultrafine MoO2 nanoparticles embedded in carbon matrix (TiO2@MoO2‐C), and demonstrates the superior electrochemical performance as the anode material for SIBs. The ultrafine MoO2 nanoparticles and the unique nanorod structure of TiO2@MoO2‐C help to decrease the Na+ diffusion length and to accommodate the accompanying volume expansion. The good integration of MoO2 nanoparticles into carbon matrix and the cable core role of TiO2 nanotube clusters enable the rapid electron transfer during discharge/charge process. Benefiting from these structure merits, the as‐made TiO2@MoO2‐C can deliver an excellent cycling stability up to 10 000 cycles even at a high current density of 10 A g?1. Additionally, it exhibits superior rate capacities of 110 and 76 mA h g?1 at high current densities of 10 and 20 A g?1, respectively, which is mainly attributed to the high capacitance contribution.  相似文献   

14.
The current Na+ storage performance of carbon‐based materials is still hindered by the sluggish Na+ ion transfer kinetics and low capacity. Graphene and its derivatives have been widely investigated as electrode materials in energy storage and conversion systems. However, as anode materials for sodium‐ion batteries (SIBs), the severe π–π restacking of graphene sheets usually results in compact structure with a small interlayer distance and a long ion transfer distance, thus leading to low capacity and poor rate capability. Herein, partially reduced holey graphene oxide is prepared by simple H2O2 treatment and subsequent low temperature reduction of graphene oxide, leading to large interlayer distance (0.434 nm), fast ion transport, and larger Na+ storage space. The partially remaining oxygenous groups can also contribute to the capacity by redox reaction. As anode material for SIBs, the optimized electrode delivers high reversible capacity, high rate capability (365 and 131 mAh g?1 at 0.1 and 10 A g?1, respectively), and good cycling performance (163 mAh g?1 after 3000 cycles at a current density of 2 A g?1), which is among the best reported performances for carbon‐based SIB anodes.  相似文献   

15.
Herein, P′2‐type Na0.67[Ni0.1Fe0.1Mn0.8]O2 is introduced as a promising new cathode material for sodium‐ion batteries (SIBs) that exhibits remarkable structural stability during repetitive Na+ de/intercalation. The O? Ni? O? Mn? O? Fe? O bond in the octahedra of transition‐metal layers is used to suppress the elongation of the Mn? O bond and to improve the electrochemical activity, leading to the highly reversible Na storage mechanism. A high discharge capacity of ≈220 mAh g?1 (≈605 Wh kg?1) is delivered at 0.05 C (13 mAg?1) with a high reversible capacity of ≈140 mAh g?1 at 3 C and excellent capacity retention of 80% over 200 cycles. This performance is associated with the reversible P′2–OP4 phase transition and small volume change upon charge and discharge (≈3%). The nature of the sodium storage mechanism in a full cell paired with a hard carbon anode reveals an unexpectedly high energy density of ≈542 Wh kg?1 at 0.2 C and good capacity retention of ≈81% for 500 cycles at 1 C (260 mAg?1).  相似文献   

16.
The exploration of sodium ion batteries (SIBs) is a profound challenge due to the rich sodium abundance and limited supply of lithium on earth. Here, amorphous SnO2/graphene aerogel (a‐SnO2/GA) nanocomposites have been successfully synthesized via a hydrothermal method for use as anode materials in SIBs. The designed annealing process produces crystalline SnO2/graphene aerogel (c‐SnO2/GA) nanocomposites. For the first time, the significant effects of SnO2 crystallinity on sodium storage performance are studied in detail. Notably, a‐SnO2/GA is more effective than c‐SnO2/GA in overcoming electrode degradation from large volume changes associated with charge–discharge processes. Surprisingly, the amorphous SnO2 delivers a high specific capacity of 380.2 mAh g?1 after 100 cycles at a current density of 50 mA g?1, which is almost three times as much as for crystalline SnO2 (138.6 mAh g?1). The impressive electrochemical performance of amorphous SnO2 can be attributed to the intrinsic isotropic nature, the enhanced Na+ diffusion coefficient, and the strong interaction between amorphous SnO2 and GA. In addition, amorphous SnO2 particles with the smaller size better function to relieve the volume expansion/shrinkage. This study provides a significant research direction aiming to increase the electrochemical performance of the anode materials used in SIBs.  相似文献   

17.
Inspired by the great success of graphite in lithium‐ion batteries, anode materials that undergo an intercalation mechanism are considered to provide stable and reversible electrochemical sodium‐ion storage for sodium‐ion battery (SIB) applications. Though MoS2 is a promising 2D material for SIBs, it suffers from deformation of its layered structure during repeated intercalation of Na+, resulting in undesirable electrochemical behaviors. In this study, vertically oriented MoS2 on nitrogenous reduced graphene oxide sheets (VO‐MoS2/N‐RGO) is presented with designed spatial geometries, including sheet density and height, which can deliver a remarkably high reversible capacity of 255 mA h g?1 at a current density of 0.2 A g?1 and 245 mA h g?1 at a current density of 1 A g?1, with a total fluctuation of 5.35% over 1300 cycles. These results are superior to those obtained with well‐developed hard carbon structures. Furthermore, a SIB full cell composed of the optimized VO‐MoS2/N‐RGO anode and a Na2V3(PO4)3 cathode reaches a specific capacity of 262 mA h g?1 (based on the anode mass) during 50 cycles, with an operated voltage range of 2.4 V, demonstrating the potentially rewarding SIB performance, which is useful for further battery development.  相似文献   

18.
Sodium‐ion batteries (SIBs) are considered to be promising energy storage devices for large‐scale grid storage application due to the vast earth‐abundance and low cost of sodium‐containing precursors. Designing and fabricating a highly efficient anode is one of the keys to improve the electrochemical performance of SIBs. Recently, fluoride‐based materials are found to show an exceptional anode function with high theoretical specific capacity, based on open‐framework structure enabling Na insertion and also exhibiting improved safety. However, fluoride‐based materials suffer from sluggish kinetics and poor capacity retention essentially due to low electric conductivity. Here, an efficient mixed‐conducting network offering fast pathways is proposed to address these issues. This network relies on titanium fluoride?carbon (TiF3?C) core/sheath nanofibers that are prepared via electrospinning. Such highly interconnected electrodes exhibit an enhanced and faster sodium storage performance. Carbon sheath nanofibers are key to an efficient ion‐ and electron‐conducting network that enable Na+/e? transfer to reach the nanosized TiF3. In addition, in‐situ‐converted Ti and NaF particles embedded in the carbon matrix allow high reversible interfacial storage. As a result, the TiF3?C core/sheath electrode exhibits a high capacity of 161 mAh g?1 at a high current density of 1000 mA g?1 over 2000 cycles.  相似文献   

19.
Presently, commercialization of sodium‐ion batteries (SIBs) is still hindered by the relatively poor energy‐storage performance. In addition, low‐temperature (low‐T) Na storage is another principal concern for the wide application of SIBs. Unfortunately, the Na‐transfer kinetics is extremely sluggish at low‐T, as a result, there are few reports on low‐T SIBs. Here, an advanced low‐T sodium‐ion full battery (SIFB) assembled by an anode of 3D Se/graphene composite and a high‐voltage cathode (Na3V2(PO4)2O2F) is developed, exhibiting ultralong lifespan (over even 15 000 cycles, the capacity retention is still up to 86.3% at 1 A g?1), outstanding low‐T energy storage performance (e.g., all values of capacity retention are >75% after 1000 cycles at temperatures from 25 to ?25 °C at 0.4 A g?1), and high‐energy/power properties. Such ultralong lifespan signifies that the developed sodium‐ion full battery can be used for longer than 60 years, if batteries charge/discharge once a day and 80% capacity retention is the standard of battery life. As a result, the present study not only promotes the practicability and commercialization of SIBs but also points out the new developing directions of next‐generation energy storage for wider range applications.  相似文献   

20.
Exploring new structure prototypes and phases by material design, especially anode materials, is essential to develop high‐performance Na‐ion batteries. This study proposes a new anode, Na2Cu2.09O0.50S2, with a 1D crystal structure and outstanding Na storage performance. In view of the crystal structure of Na2Cu2.09O0.50S2, [Cu4S4] chains act as electrically conducting units enabling conductivity as high as 0.5 S cm?1. The residual Na4[CuO] chains act as ionically conducting units forming rich channels for the fast conduction of Na ions as well as maintaining the structural stability even after Na ion extraction. Additional ball milling on the as‐prepared Na2Cu2.09O0.50S2 significantly decreases its grain size, achieving a capacity of 588 mA h g?1 with a high initial Coulombic efficiency of 93% at 0.2 A g?1. Moreover, the Na2Cu2.09O0.50S2 anode demonstrates outstanding rate capability (408 mA h g?1 at 2 A g?1) and extending cyclic performance (82% of capacity retention after 400 cycles). The general structural design idea based on functional units may offer a new avenue to new electrode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号