首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Short chain fatty acids (SCFAs) affect various intestinal functions. Mucus is an important physiological component of the intestinal mucosal barrier. However, the effect of SCFAs or other organic acids on the intestinal mucus release is poorly understood. The aim of this study was to investigate whether lumen SCFA stimulates mucus release into the rat colon. Methods: A solution of SCFA, lactate or succinate was infused into the colon of anesthetized rats, and we then measured the hexose content of the effluent. We also examined the influence of cholinergic antagonists on the effects of SCFA. Results: A SCFA mixture (75 mM acetate, 35 mM propionate and 20 mM butyrate) or individual SCFAs (130 mM) increased the mucus release into the colon in a similar manner. The individual SCFAs, but not lactate or succinate, stimulated colonic mucus secretion in similar concentration-dependent manners. Butyrate stimulated colonic mucus secretion at 20 mM, but acetate, propionate, lactate and succinate at this concentration did not. Pretreatment with an anti-cholinergic agent diminished the stimulatory effects of SCFAs on mucus secretion. Conclusions: Lumen SCFAs, but not lactate or succinate, stimulate mucus release from the rat colon via a cholinergic nerve mechanism.  相似文献   

2.
It is reported that an increase in aerobic bacteria, a lack of short-chain fatty acids (SCFAs), and immune disorders in the diverted colon are major causes of diversion colitis. However, the precise pathogenesis of this condition remains unclear. The aim of the present study was to examine the microbiota, intestinal SCFAs, and immunoglobulin A (IgA) in the diverted colon. Eight patients underwent operative procedures for colostomies. We assessed the diverted colon using endoscopy and obtained intestinal samples from the diverted colon and oral colon in these patients. We analyzed the microbiota and SCFAs of the intestinal samples. The bacterial communities were investigated using a 16S rRNA gene sequencing method. The microbiota demonstrated a change in the proportion of some species, especially Lactobacillus, which significantly decreased in the diverted colon at the genus level. We also showed that intestinal SCFA values were significantly decreased in the diverted colon. Furthermore, intestinal IgA levels were significantly increased in the diverted colon. This study was the first to show that intestinal SCFAs were significantly decreased and intestinal IgA was significantly increased in the diverted colon. Our data suggest that SCFAs affect the microbiota and may play an immunological role in diversion colitis.  相似文献   

3.
An altered gut microbiota has been linked to obesity in adulthood, although little is known about childhood obesity. The aim of this study was to characterize the composition of the gut microbiota in obese (n = 42) and normal‐weight (n = 36) children aged 6 to 16. Using 16S rRNA gene‐targeted sequencing, we evaluated taxa with differential abundance according to age‐ and sex‐normalized body mass index (BMI z‐score). Obesity was associated with an altered gut microbiota characterized by elevated levels of Firmicutes and depleted levels of Bacteroidetes. Correlation network analysis revealed that the gut microbiota of obese children also had increased correlation density and clustering of operational taxonomic units (OTUs). Members of the Bacteroidetes were generally better predictors of BMI z‐score and obesity than Firmicutes, which was likely due to discordant responses of Firmicutes OTUs. In accordance with these observations, the main metabolites produced by gut bacteria, short chain fatty acids (SCFAs), were higher in obese children, suggesting elevated substrate utilisation. Multiple taxa were correlated with SCFA levels, reinforcing the tight link between the microbiota, SCFAs and obesity. Our results suggest that gut microbiota dysbiosis and elevated fermentation activity may be involved in the etiology of childhood obesity.  相似文献   

4.
A functional mucus layer is a key requirement for gastrointestinal health as it serves as a barrier against bacterial invasion and subsequent inflammation. Recent findings suggest that mucus composition may pose an important selection pressure on the gut microbiota and that altered mucus thickness or properties such as glycosylation lead to intestinal inflammation dependent on bacteria. Here we used TM-IEC C1galt -/- mice, which carry an inducible deficiency of core 1-derived O-glycans in intestinal epithelial cells, to investigate the effects of mucus glycosylation on susceptibility to intestinal inflammation, gut microbial ecology and host physiology. We found that TM-IEC C1galt -/- mice did not develop spontaneous colitis, but they were more susceptible to dextran sodium sulphate-induced colitis. Furthermore, loss of core 1-derived O-glycans induced inverse shifts in the abundance of the phyla Bacteroidetes and Firmicutes. We also found that mucus glycosylation impacts intestinal architecture as TM-IEC C1galt-/- mice had an elongated gastrointestinal tract with deeper ileal crypts, a small increase in the number of proliferative epithelial cells and thicker circular muscle layers in both the ileum and colon. Alterations in the length of the gastrointestinal tract were partly dependent on the microbiota. Thus, the mucus layer plays a role in the regulation of gut microbiota composition, balancing intestinal inflammation, and affects gut architecture.  相似文献   

5.
Disturbance of the beneficial gut microbial community is a potential collateral effect of antibiotics, which have many uses in animal agriculture (disease treatment or prevention and feed efficiency improvement). Understanding antibiotic effects on bacterial communities at different intestinal locations is essential to realize the full benefits and consequences of in-feed antibiotics. In this study, we defined the lumenal and mucosal bacterial communities from the small intestine (ileum) and large intestine (cecum and colon) plus feces, and characterized the effects of in-feed antibiotics (chlortetracycline, sulfamethazine and penicillin (ASP250)) on these communities. 16S rRNA gene sequence and metagenomic analyses of bacterial membership and functions revealed dramatic differences between small and large intestinal locations, including enrichment of Firmicutes and phage-encoding genes in the ileum. The large intestinal microbiota encoded numerous genes to degrade plant cell wall components, and these genes were lacking in the ileum. The mucosa-associated ileal microbiota harbored greater bacterial diversity than the lumen but similar membership to the mucosa of the large intestine, suggesting that most gut microbes can associate with the mucosa and might serve as an inoculum for the lumen. The collateral effects on the microbiota of antibiotic-fed animals caused divergence from that of control animals, with notable changes being increases in Escherichia coli populations in the ileum, Lachnobacterium spp. in all gut locations, and resistance genes to antibiotics not administered. Characterizing the differential metabolic capacities and response to perturbation at distinct intestinal locations will inform strategies to improve gut health and food safety.  相似文献   

6.
BackgroundCyclocarya paliurus polysaccharide (CCPP), a primary active component in the leaves of Cyclocarya paliurus (Batal.) Iljinsk (C. paliurus), has the ability to treat type 2 diabetes mellitus (T2DM), but cannot be digested by our digestive system. Therefore, mechanisms of regulating the gut microbiota and intestinal metabolites might exist.PurposeTo reveal the potential mechanism of CCPP treatment, this study aimed to investigate the alterations of the gut microbiota and intestinal metabolites especially short chain fatty acids (SCFAs) in type 2 diabetic rats.Study design and methodsType 2 diabetic rat models were developed, and the therapeutic effects of CCPP were evaluated. Metagenomics analysis was utilized to analyze the alterations to the gut microbiota, and UHPLC-QTOF/MS-based untargeted metabolomics analysis of colon contents was used to identify the differential intestinal metabolites. GC/MS was used to measure the SCFAs in rat's colon contents and human fecal inoculums. Furthermore, the expression of SCFA receptors including GPR41, GPR43 and GPR109a was verified by qRT-PCR and the concentration of glucagon-like peptide-1(GLP-1) and peptide tyrosinetyrosine (PYY) was measured by Elisa.ResultsInhibition of the blood glucose levels and improvements in glucose tolerance and serum lipid parameters were observed after CCPP treatment. Eleven SCFA-producing species including Ruminococcus_bromii, Anaerotruncus_colihominis, Clostridium_methylpentosum, Roseburia_intestinalis, Roseburia_hominis, Clostridium_asparagiforme, Pseudoflavonifractor_capillosus, Intestinimonas_butyriciproducens, Intestinimonas_sp._GD2, Oscillibacter_valericigenes and Oscillibacter_ruminantium were clearly increased in the CCPP group. Furthermore, our study indicated that CCPP increases the production of SCFAs both in vivo and in vitro, and the gut microbiota are the key factor of this process. The SCFA receptors including GPR41, GPR43 and GPR109a, were significantly stimulated in the CCPP treated rats, which was accompanied by the upregulated expression of GLP-1 and PYY.ConclusionThese results demonstrated that CCPP could alleviate type 2 diabetic symptoms by increasing the SCFA-producing bacteria, promoting the production of SCFAs and upregulating SCFA-GLP1/PYY associated sensory mediators.  相似文献   

7.
Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs-mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy.  相似文献   

8.
Gut microbiota and short‐chain fatty acids (SCFAs) are associated with the development of various human diseases. In this study, we examined the role of astragaloside IV in modulating mouse gut microbiota structure and the generation of SCFAs, as well as in slow transit constipation (STC). An STC model was established by treating mice with loperamide, in which the therapeutic effects of astragaloside IV were evaluated. The microbiota community structure and SCFA content were analysed by 16S rRNA gene sequencing and gas chromatography‐mass spectrometry, respectively. The influence of butyrate on STC was assessed using a mouse model and Cajal cells (ICC). Astragaloside IV promoted defecation, improved intestinal mobility, suppressed ICC loss and alleviated colonic lesions in STC mice. Alterations in gut microbiota community structure in STC mice, such as decreased Lactobacillus reuteri diversity, were improved following astragaloside IV treatment. Moreover, astragaloside IV up‐regulated butyric acid and valeric acid, but decreased isovaleric acid, in STC mouse stools. Butyrate promoted defecation, improved intestinal mobility, and enhanced ICC proliferation by regulating the AKT–NF‐κB signalling pathway. Astragaloside IV promoted intestinal transit in STC mice and inhibited ICC loss by regulating the gut microbiota community structure and generating butyric acid.  相似文献   

9.
Noninvasive sampling methods for studying intestinal microbiomes are widely applied in studies of endangered species and in those conducting temporal monitoring during manipulative experiments. Although existing studies show that noninvasive sampling methods among different taxa vary in their accuracy, no studies have yet been published comparing nonlethal sampling methods in adult amphibians. In this study, we compare microbiomes from two noninvasive sample types (faeces and cloacal swabs) to that of the large intestine in adult cane toads, Rhinella marina. We use 16S rRNA gene sequencing to investigate how microbial communities change along the digestive tract and which nonlethal sampling method better represents large intestinal microbiota. We found that cane toads' intestinal microbiota was dominated by Bacteroidetes, Proteobacteria and Firmicutes and, interestingly, we also saw a high proportion of Fusobacteria, which has previously been associated with marine species and changes in frog immunity. The large and small intestine of cane toads had a similar microbial composition, but the large intestine showed higher diversity. Our results indicate that cloacal swabs were more similar to large intestine samples than were faecal samples, and small intestine samples were significantly different from both nonlethal sample types. Our study provides valuable information for future investigations of the cane toad gut microbiome and validates the use of cloacal swabs as a nonlethal method to study changes in the large intestine microbiome. These data provide insights for future studies requiring nonlethal sampling of amphibian gut microbiota.  相似文献   

10.
The gut microbiota is considered a key factor in pathogenesis and progression of inflammatory bowel disease (IBD). The bacterium Pediococcus pentosaceus LI05 alleviated host inflammation by maintaining the gut epithelial integrity, modulating the host immunity, gut microbiota and metabolism, but its effect on IBD remains unclear. The present study aimed to investigate the role and mechanisms of P. pentosaceus LI05. Mice were administered P. pentosaceus LI05 or phosphate-buffered saline once daily by oral gavage for 14 days, and colitis was induced by providing mice 2% DSS-containing drinking water for 7 days. P. pentosaceus LI05 ameliorated colitis in mice and reduced the body weight loss, disease activity index (DAI) scores, colon length shortening, intestinal permeability and the proinflammatory cytokine levels. Furthermore, a significantly altered gut microbiota composition with increased diversity and short-chain fatty acid (SCFA) production was observed in mice treated with P. pentosaceus LI05. Several genera, including Akkermansia and Faecalibacterium, were differentially enriched in the P. pentosaceus LI05-treated mice and were negatively correlated with colitis indices and positively correlated with gut barrier markers and SCFA levels. The P. pentosaceus LI05 treatment alleviated intestinal inflammation by maintaining the intestinal epithelial integrity and modulating the immunological profiles, gut microbiome and metabolite composition. Based on our findings, P. pentosaceus LI05 might be applied as potential preparation to ameliorate colitis.  相似文献   

11.
The human large intestine is covered with a protective mucus coating, which is heavily colonized by complex bacterial populations that are distinct from those in the gut lumen. Little is known of the composition and metabolic activities of these biofilms, although they are likely to play an important role in mucus breakdown. The aims of this study were to determine how intestinal bacteria colonize mucus and to study physiologic and enzymatic factors involved in the destruction of this glycoprotein. Colonization of mucin gels by fecal bacteria was studied in vitro, using a two-stage continuous culture system, simulating conditions of nutrient availability and limitation characteristic of the proximal (vessel 1) and distal (vessel 2) colon. The establishment of bacterial communities in mucin gels was investigated by selective culture methods, scanning electron microscopy, and confocal laser scanning microscopy, in association with fluorescently labeled 16S rRNA oligonucleotide probes. Gel samples were also taken for analysis of mucin-degrading enzymes and measurements of residual mucin sugars. Mucin gels were rapidly colonized by heterogeneous bacterial populations, especially members of the Bacteroides fragilis group, enterobacteria, and clostridia. Intestinal bacterial populations growing on mucin surfaces were shown to be phylogenetically and metabolically distinct from their planktonic counterparts.  相似文献   

12.
Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism.  相似文献   

13.
The gut microbiomes of birds and other animals are increasingly being studied in ecological and evolutionary contexts. Numerous studies on birds and reptiles have made inferences about gut microbiota using cloacal sampling; however, it is not known whether the bacterial community of the cloaca provides an accurate representation of the gut microbiome. We examined the accuracy with which cloacal swabs and faecal samples measure the microbiota in three different parts of the gastrointestinal tract (ileum, caecum, and colon) using a case study on juvenile ostriches, Struthio camelus, and high‐throughput 16S rRNA sequencing. We found that faeces were significantly better than cloacal swabs in representing the bacterial community of the colon. Cloacal samples had a higher abundance of Gammaproteobacteria and fewer Clostridia relative to the gut and faecal samples. However, both faecal and cloacal samples were poor representatives of the microbial communities in the caecum and ileum. Furthermore, the accuracy of each sampling method in measuring the abundance of different bacterial taxa was highly variable: Bacteroidetes was the most highly correlated phylum between all three gut sections and both methods, whereas Actinobacteria, for example, was only strongly correlated between faecal and colon samples. Based on our results, we recommend sampling faeces, whenever possible, as this sample type provides the most accurate assessment of the colon microbiome. The fact that neither sampling technique accurately portrayed the bacterial community of the ileum nor the caecum illustrates the difficulty in noninvasively monitoring gut bacteria located further up in the gastrointestinal tract. These results have important implications for the interpretation of avian gut microbiome studies.  相似文献   

14.
The human commensal Bacteroides fragilis binds intestinal mucin   总被引:1,自引:0,他引:1  
Huang JY  Lee SM  Mazmanian SK 《Anaerobe》2011,17(4):137-141
The mammalian gastrointestinal tract harbors a vast microbial ecosystem, known as the microbiota, which benefits host biology. Bacteroides fragilis is an important anaerobic gut commensal of humans that prevents and cures intestinal inflammation. We wished to elucidate aspects of gut colonization employed by B. fragilis. Fluorescence in situ hybridization was performed on colonic tissue sections from B. fragilis and Escherichia coli dual-colonized gnotobiotic mice. Epifluorescence imaging reveals that both E. coli and B. fragilis are found in the lumen of the colon, but only B. fragilis is found in the mucosal layer. This observation suggests that physical association with intestinal mucus could be a possible mechanism of gut colonization by B. fragilis. We investigated this potential interaction using an in vitro mucus binding assay and show here that B. fragilis binds to murine colonic mucus. We further demonstrate that B. fragilis specifically and quantitatively binds to highly purified mucins (the major constituent in intestinal mucus) using flow cytometry analysis of fluorescently labeled purified murine and porcine mucins. These results suggest that interactions between B. fragilis and intestinal mucin may play a critical role during host-bacterial symbiosis.  相似文献   

15.
Pan  Zhiyuan  Hu  Yichen  Huang  Zongyu  Han  Ni  Li  Yan  Zhuang  Xiaomei  Yin  Jiye  Peng  Hui  Gao  Quansheng  Zhang  Wenpeng  Huang  Yong  Cui  Yujun  Bi  Yujing  Xu  Zhenjiang Zech  Yang  Ruifu 《中国科学:生命科学英文版》2022,65(10):2093-2113

The gut microbiota is involved in host responses to high altitude. However, the dynamics of intestinal microecology and their association with altitude-related illness are poorly understood. Here, we used a rat model of hypobaric hypoxia challenge to mimic plateau exposure and monitored the gut microbiome, short-chain fatty acids (SCFAs), and bile acids (BAs) over 28 d. We identified weight loss, polycythemia, and pathological cardiac hypertrophy in hypoxic rats, accompanied by a large compositional shift in the gut microbiota, which is mainly driven by the bacterial families of Prevotellaceae, Porphyromonadaceae, and Streptococcaceae. The aberrant gut microbiota was characterized by increased abundance of the Parabacteroides, Alistipes, and Lactococcus genera and a larger Bacteroides to Prevotella ratio. Trans-omics analyses showed that the gut microbiome was significantly correlated with the metabolic abnormalities of SCFAs and BAs in feces, suggesting an interaction network remodeling of the microbiome-metabolome after the hypobaric hypoxia challenge. Interestingly, the transplantation of fecal microbiota significantly increased the diversity of the gut microbiota, partially inhibited the increased abundance of the Bacteroides and Alistipes genera, restored the decrease of plasma propionate, and moderately ameliorated cardiac hypertrophy in hypoxic rats. Our results provide an insight into the longitudinal changes in intestinal microecology during the hypobaric hypoxia challenge. Abnormalities in the gut microbiota and microbial metabolites contribute to the development of high-altitude heart disease in rats.

  相似文献   

16.
刘昭曦  王禄山  陈敏 《微生物学报》2021,61(7):1816-1828
宿主与肠道共生菌之间存在一种互利共生的关系.肠道共生菌可以代谢宿主自身不能消化的多糖.进入肠道内的多糖是影响肠道共生菌生理状态和组成的重要因素,这些多糖主要来自饮食和宿主的粘膜分泌物.人类饮食中含有几十种不同的膳食多糖,其中大多数不能被人类基因组中编码的酶降解,并进入大肠,供肠道共生菌利用.肠道共生菌将这些不易消化的多...  相似文献   

17.
The fish fauna of the Southern Ocean is dominated by species of the perciform suborder Notothenioidei, which constitute 46% of fish species and 90% of biomass. Notothenioids have undergone rapid morphological and ecological diversification and developed physiological adaptations to a cold, highly oxygenated environment. Microbes inhabiting animal intestines include those that perform essential nutritional functions, but notothenioid gut microbial communities have not been investigated using cultivation-independent approaches. We analyzed bacterial 16S rRNA gene sequences obtained from the intestinal tract of Notothenia coriiceps and Chaenocephalus aceratus, which differ in their pelagic distribution and feeding strategies. Both samples showed dominance of Gammaproteobacteria (mostly Vibrionaceae), as has been reported for temperate teleost species. Both samples showed low diversity relative to that reported for other fish microbiota studies, with C. aceratus containing fewer OTUs than N. coriiceps. Despite the small sample size of this preliminary study, our findings suggest that Antarctic notothenioids carry a gut microbiota similar in composition to that of temperate fish, but exhibiting lower species-level diversity. The omnivorous N. coriiceps individual exhibited greater diversity than the exclusively carnivorous C. aceratus individual, which may indicate that increasing herbivory in fish leads to gut microbe diversification, as found in mammals. Lastly, we detected members of taxa containing known microbial pathogens, which have not been previously reported in Antarctic notothenioid fish.  相似文献   

18.
To avoid detrimental interactions with intestinal microbes, the human epithelium is covered with a protective mucus layer that traps host defence molecules. Microbial properties such as adhesion to mucus further result in a unique mucosal microbiota with a great potential to interact with the host. As mucosal microbes are difficult to study in vivo, we incorporated mucin‐covered microcosms in a dynamic in vitro gut model, the simulator of the human intestinal microbial ecosystem (SHIME). We assessed the importance of the mucosal environment in this M‐SHIME (mucosal‐SHIME) for the colonization of lactobacilli, a group for which the mucus binding domain was recently discovered. Whereas the two dominant resident Lactobacilli, Lactobacillus mucosae and Pediococcus acidilactici, were both present in the lumen, L. mucosae was strongly enriched in mucus. As a possible explanation, the gene encoding a mucus binding (mub) protein was detected by PCR in L. mucosae. Also the strongly adherent Lactobacillus rhamnosus GG (LGG) specifically colonized mucus upon inoculation. Short‐term assays confirmed the strong mucin‐binding of both L. mucosae and LGG compared with P. acidilactici. The mucosal environment also increased long‐term colonization of L. mucosae and enhanced its stability upon antibiotic treatment (tetracycline, amoxicillin and ciprofloxacin). Incorporating a mucosal environment thus allowed colonization of specific microbes such as L. mucosae and LGG, in correspondence with the in vivo situation. This may lead to more in vivo‐like microbial communities in such dynamic, long‐term in vitro simulations and allow the study of the unique mucosal microbiota in health and disease.  相似文献   

19.
寄生于人体的肠道菌群是一个高度动态化和个体化的复杂生态系统,受遗传、环境、饮食、年龄和运动等因素的影响,并通过其产生的代谢物与机体众多组织器官产生广泛的应答效应。短链脂肪酸(short chain fatty acid, SCFA)主要是由位于盲肠和结肠内的菌群以膳食纤维为底物发酵产生,其被吸收进入肠系膜上下静脉,随后汇入门静脉至肝。部分短链脂肪酸被肝作为糖异生和脂质合成的底物,剩余的短链脂肪酸以游离脂肪酸的形式经肝静脉进入外周循环。研究发现,运动可使产生SCFA的肠道菌群组分的丰度提高和参与调控SCFA生成的相关基因表达增加,使肠道中短链脂肪酸含量增加。由短链脂肪酸刺激结肠内分泌细胞合成分泌的胰高血糖素样肽1(glucagon like peptide-1, GLP-1)可促使胰岛B细胞合成分泌胰岛素,进而调节骨骼肌的葡萄糖摄取与糖原合成。此外,短链脂肪酸通过提高骨骼肌胰岛素受体底物1(insulin receptor substrate 1,IRS1)基因转录起始位点附近的组蛋白乙酰化水平,增强骨骼肌的胰岛素敏感性。同时,短链脂肪酸通过激活腺苷酸活化蛋白质激酶(AMP-activated protein kinase, AMPK)促进骨骼肌的脂肪酸摄取、脂肪分解和线粒体生物发生,抑制脂肪合成。本文就肠道菌群代谢物——短链脂肪酸概述、运动对产生短链脂肪酸的肠道菌群的影响和运动介导肠道菌群代谢物——短链脂肪酸对骨骼肌代谢调控机制的最新研究进展进行综述,为骨骼肌运动适应的新机制研究提供理论依据。  相似文献   

20.
Different factors may modulate the gut microbiota of animals. In any particular environment, diet, genetic factors and human influences can shape the bacterial communities residing in the gastrointestinal tract. Metagenomic approaches have significantly expanded our knowledge on microbiota dynamics inside hosts, yet cultivation and isolation of bacterial members of these complex ecosystems may still be necessary to fully understand interactions between bacterial communities and their host. A dual approach, involving culture‐independent and ‐dependent techniques, was used here to decipher the microbiota communities that inhabit the gastro intestinal tract of free‐range, broiler and feral chickens. In silico analysis revealed the presence of a core microbiota that is typical of those animals that live in different geographical areas and that have limited contact with humans. Anthropic influences guide the metabolic potential and the presence of antibiotic resistance genes of these different bacterial communities. Culturomics attempts, based on different cultivation conditions, were applied to reconstruct in vitro the microbiota of feral chickens. A unique strain collection representing members of the four major phyla of the poultry microbiota was assembled, including bacterial strains that are not typically retrieved from the chicken gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号