首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the use of silicon‐based electrodes can increase the capacity of Li‐ion batteries considerably, their application is associated with significant capacity losses. In this work, the influences of solid electrolyte interphase (SEI) formation, volume expansion, and lithium trapping are evaluated for two different electrochemical cycling schemes using lithium‐metal half‐cells containing silicon nanoparticle–based composite electrodes. Lithium trapping, caused by incomplete delithiation, is demonstrated to be the main reason for the capacity loss while SEI formation and dissolution affect the accumulated capacity loss due to a decreased coulombic efficiency. The capacity losses can be explained by the increasing lithium concentration in the electrode causing a decreasing lithiation potential and the lithiation cut‐off limit being reached faster. A lithium‐to‐silicon atomic ratio of 3.28 is found for a silicon electrode after 650 cycles using 1200 mAhg?1 capacity limited cycling. The results further show that the lithiation step is the capacity‐limiting step and that the capacity losses can be minimized by increasing the efficiency of the delithiation step via the inclusion of constant voltage delithiation steps. Lithium trapping due to incomplete delithiation consequently constitutes a very important capacity loss phenomenon for silicon composite electrodes.  相似文献   

2.
The formation of the solid electrolyte interphase (SEI) on Si is examined in detail using several in situ techniques. The results show that employing different conditions during the first lithiation cycle produces SEI films with substantially different properties. Longer time at higher potentials produces softer SEI, whereas inorganic phases produced at lower potentials have higher elastic moduli. The SEI thickness stabilizes during the first cycle; however, the SEI resistance decreases during the first 20 cycles (in sharp contrast to typical surface passivation processes, where resistance is expected to increase with time). This behavior is consistent with the slow growth of inorganic constituents at lower potentials, inside of a mesoporous soft SEI that initially forms at higher potentials. This interpretation is based on the premise that these inorganic phases have a lower resistivity than that associated with electrolyte transport through the mesoporous organic phase. Based on this set of observations, the multiphase structure that evolves during initial cycling determines critical electrochemical and mechanical properties of the SEI. A basic model of these tradeoffs is proposed to provide guidelines for creating more stable interfacial films.  相似文献   

3.
In situ measurements of the growth of solid electrolyte interphase (SEI) layer on silicon and the lithiation‐induced volume changes in silicon in lithium ion half‐cells are reported. Thin film amorphous silicon electrodes are fabricated in a configuration that allows unambiguous separation of the total thickness change into contribution from SEI thickness and silicon volume change. Electrodes are assembled into a custom‐designed electrochemical cell, which is integrated with an atomic force microscope. The electrodes are subjected to constant potential lithiation/delithiation at a sequence of potential values and the thickness measurements are made at each potential after equilibrium is reached. Experiments are carried out with two electrolytes—1.2 m lithium hexafluoro‐phosphate (LiPF6) in ethylene carbonate (EC) and 1.2 m LiPF6 in propylene carbonate (PC)—to investigate the influence of electrolyte composition on SEI evolution. It is observed that SEI formation occurs predominantly during the first lithiation and the maximum SEI thickness is ≈17 and 10 nm respectively for EC and PC electrolytes. This study also presents the measured Si expansion ratio versus equilibrium potential and charge capacity versus equilibrium potential; both relationships display hysteresis, which is explained in terms of the stress–potential coupling in silicon.  相似文献   

4.
Elastic strains are measured in operando in a nanostructured silicon‐coated nickel inverse opal scaffold anode, using X‐ray diffraction to study the Si (de)lithiation‐induced Ni strains. The volume expansion upon lithiation of the Si in the anode is constrained by the surrounding Ni scaffold, causing mismatch stresses and strains in the Si and Ni phases during cycling. The Ni strains are measured in operando during (dis)charge cycles, using diffraction peak position and peak broadness to describe the distribution of strain in the Ni. During lithiation, compressive strains in the Ni first increase linearly with charge, after which a gradually decreasing strain rate is observed as the maximum lithiation state is approached; upon delithiation a similar process occurs. In‐plane average compressive strains on the order of 990 ± 40 με are measured in the Ni scaffold during lithiation, corresponding to compressive stresses of 215 ± 9 MPa. The decreasing strain rates and decreasing maximum and recovered strains suggest that plasticity in Ni and/or Si, as well as delamination between Ni and Si, may occur during cycling. Rate sensitivity in capacity is correlated with strain and a maximum Ni compressive stress of 230 ± 40 MPa is measured at the maximum state of lithiation.  相似文献   

5.
Multiple‐internal‐reflection infrared spectroscopy allows for the study of thin‐film amorphous silicon electrodes in situ and in operando, in conditions typical of those used in Li‐ion batteries. It brings an enhanced sensitivity, and the attenuated‐total‐reflection geometry allows for the extraction of quantitative information. When electrodes are cycled in representative electrolytes, the simultaneously recorded infrared spectra give an insight into the solid/electrolyte interphase (SEI) composition. They also unravel the dynamic behavior of this SEI layer by quantitatively assessing its thickness, which increases during silicon lithiation and partially decreases during delithiation. Li‐ion solvation effects in the vicinity of the electrode indicate that lithium incorporation in the solid phase is the rate‐determining step of the electrochemical processes during lithiation. The lithiation of the active material also results in the irreversible consumption of a large quantity of hydrogen in the pristine material. Finally, the evolution of the electronic absorption of the electrode material suggests that lithium diffusion is much easier after the first lithiation than in the pristine material. Therefore, in situ Fourier‐transform infrared spectroscopy performed in a well‐suited configuration efficiently extracts original and quantitative pieces of information on the surface and bulk phenomena affecting Li‐ion electrodes during their operation in realistic conditions.  相似文献   

6.
Due to the high lithium capacity of silicon, the composite (blended) electrodes containing silicon (Si) and graphite (Gr) particles are attractive alternatives to the all‐Gr electrodes used in conventional lithium‐ion batteries. In this Communication, the lithiation and delithiation in the Si and Gr particles in a 15 wt% Si composite electrode is quantified for each component using energy dispersive X‐ray diffraction. This quantification is important as the components cycle in different potential regimes, and interpretation of cycling behavior is complicated by the potential hysteresis displayed by Si. The lithiation begins with Li alloying with Si; lithiation of Gr occurs at later stages when the potential dips below 0.2 V (all potentials are given vs Li/Li+). In the 0.2–0.01 V range, the relative lithiation of Si and Gr is ≈58% and 42%, respectively. During delithiation, Li+ ion extraction occurs preferentially from Gr in the 0.01–0.23 V range and from Si in the 0.23–1.0 V range; that is, the delithiation current is carried sequentially, first by Gr and then by Si. These trends can be used for rational selection of electrochemical cycling windows that limits volumetric expansion in Si particles, thereby extending cell life.  相似文献   

7.
There are growing concerns over the environmental, climate, and health impacts caused by using non‐renewable fossil fuels. The utilization of green energy, including solar and wind power, is believed to be one of the most promising alternatives to support more sustainable economic growth. In this regard, lithium‐ion batteries (LIBs) can play a critically important role. To further increase the energy and power densities of LIBs, silicon anodes have been intensively explored due to their high capacity, low operation potential, environmental friendliness, and high abundance. The main challenges for the practical implementation of silicon anodes, however, are the huge volume variation during lithiation and delithiation processes and the unstable solid‐electrolyte interphase (SEI) films. Recently, significant breakthroughs have been achieved utilizing advanced nanotechnologies in terms of increasing cycle life and enhancing charging rate performance due partially to the excellent mechanical properties of nanomaterials, high surface area, and fast lithium and electron transportation. Here, the most recent advance in the applications of 0D (nanoparticles), 1D (nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in LIBs are summarized. The synthetic routes and electrochemical performance of these Si nanomaterials, and the underlying reaction mechanisms are systematically described.  相似文献   

8.
Silicon‐based anodes are an appealing alternative to graphite for lithium‐ion batteries because of their extremely high capacity. However, poor cycling stability and slow kinetics continue to limit the widespread use of silicon in commercial batteries. Performance improvement has been often demonstrated in nanostructured silicon electrodes, but the reaction mechanisms involved in the electrochemical lithiation of nanoscale silicon are not well understood. Here, in‐situ synchrotron X‐ray diffraction is used to monitor the subtle structural changes occurring in Si nanoparticles in a Si‐C composite electrode during lithiation. Local analysis by electron energy‐loss spectroscopy and transmission electron microscopy is performed to interrogate the nanoscale morphological changes and phase evolution of Si particles at different depths of discharge. It is shown that upon lithiation, Si nanoparticles behave quite differently than their micrometer‐sized counterparts. Although both undergo an electrochemical amorphization, the micrometer‐sized silicon exhibits a linear transformation during lithiation, while a two‐step process occurs in the nanoscale Si. In the first half of the discharge, lithium reacts with surfaces, grain boundaries and planar defects. As the reaction proceeds and the cell voltage drops, lithium consumes the crystalline core transforming it into amorphous LixSi with a primary particle size of just a few nanometers. Unlike the bulk silicon electrode, no Li15Si4 or other crystalline LixSi phases were formed in nanoscale Si at the fully‐lithiated state.  相似文献   

9.
It is well known that the mechanical properties of lithium‐ion battery electrodes impact their electrochemical performance. This is especially critical for Si‐based negative electrodes, which suffer from large volume changes of the active mass upon cycling. Here, this study presents a postprocessing treatment (called maturation) that improves the mechanical and electrochemical stabilities of silicon‐based anodes made with an acidic aqueous binder. It consists of storing the electrode in a humid atmosphere for a few days before drying and cell assembly. This results in a beneficial in situ reactive modification of the interfaces within the electrode. First, the binder tends to concentrate at the silicon interparticle contacts. As a result, the cohesion of the composite film is strengthened. Second, the corrosion of the copper current collector, inducing the formation of copper carboxylate bonds, improves the adhesion of the composite film. The great improvement of the mechanical stability of the matured electrode is confirmed by in‐operando optical microscopy showing the absence of film delamination. The result is a significant electrochemical performance gain, up to a factor 10, compared to a not‐matured electrode. This maturation procedure can be applied to other types of electrodes for improving their electrochemical performance and also their handling during cell manufacturing.  相似文献   

10.
In situ strain and stress measurements are performed on composite electrodes to monitor potential‐dependent stiffness changes in lithium manganese oxide (LiMn2O4). Lithium insertion and removal results in asynchronous strain and stress generation in the electrode. Electrochemical stiffness changes are calculated by combining coordinated stress and strain measurements. The electrode experiences dramatic changes in electrochemical stiffness due to potential‐dependent Li+ ion intercalation mechanisms. The development of stress in the early stages of delithiation (at ≈3.95 V) due to a kinetic barrier at the electrode surface gives rise to stiffness changes in the electrode. Strain generation due to phase transformations reduces stiffness in the electrode at 4.17 V during delithiation and at 4.11 V during lithiation. During lithiation, stress generation due to Coulombic repulsions between occupied and incoming Li+ ions leads to stiffening of the electrode at 3.96 V. The electrode also experiences greater changes in stiffness during delithiation compared to lithiation. These changes in electrochemical stiffness provide insight into the interplay between mechanical and electrochemical properties which control electrode response to lithiation and delithiation.  相似文献   

11.
Lithium/selenium‐sulfur batteries have recently received considerable attention due to their relatively high specific capacities and high electronic conductivity. Different from the traditional encapsulation strategy for suppressing the shuttle effect, an alternative approach to directly bypass polysulfide/polyselenide formation via rational solid‐electrolyte interphase (SEI) design is demonstrated. It is found that the robust SEI layer that in situ forms during charge/discharge via interplay between rational cathode design and optimal electrolytes could enable solid‐state (de)lithiation chemistry for selenium‐sulfur cathodes. Hence, Se‐doped S22.2Se/Ketjenblack cathodes can attain a high reversible capacity with minimal shuttle effects during long‐term and high rate cycling. Moreover, the underlying solid‐state (de)lithiation mechanism, as evidenced by in situ 7Li NMR and in operando synchrotron X‐ray probes, further extends the optimal sulfur confinement pore size to large mesopores and even macropores that have been long considered as inferior sulfur or selenium host materials, which play a crucial role in developing high volumetric energy density batteries. It is expected that the findings in this study will ignite more efforts to tailor the compositional/structure characteristics of the SEI layers and the related ionic transport across the interface by electrode structure, electrolyte solvent, and electrolyte additive screening.  相似文献   

12.
The effect of varying the oxygen content in Sn and SnOx films during potential dependent SnOx conversion reactions and LiySn alloying relevant to Li ion battery anodes is examined. For metallic Sn films, the stresses and stability of the films are controlled by Li alloying reactions. Small, non‐contacting separated Sn particles exhibit higher electrochemical stability relative to more continuous polycrystalline films with larger particles. Metallic Sn particles develop tensile stress during LiySn de‐alloying as porous structures are formed. The amount of stress associated with lithiation and delithiation of well‐separated metallic particles decreases as a porous, easy to lithiate, material forms with cycling. During the lithiation of oxides, conversion reactions (SnOx → Sn) and the lithiation of the metallic Sn control the stress responses of the films, leading to highly potential‐dependent stress development. In particular, evidence for a multistep electrochemical mechanism, in which partially reversible lithiation of the oxygen‐containing phases is conjoined with a fully reversible lithiation of the metallic phases of the Sn, is found. The electrochemical stress analysis provides new insight into these mechanisms and delineates the extent of the reversibility of lithiation and conversion reactions of oxides.  相似文献   

13.
The combined effect of lithium‐ion diffusion, potential‐concentration gradient, and stress plays a critical role in the rate capability and cycle life of Si‐based anodes of lithium‐ion batteries. In this work, Si nanofilm anodes are shown to exhibit an asymmetric rate performance: around 72% of the total available capacity can be delivered during de‐lithiation under a high current density of 420 A g‐1 (100C where C is the charge‐rate) in 22 s; in striking contrast, only 1% capacity can be delivered during lithiation. A mathematical model of single‐ion diffusion is established to elucidate the asymmetric rate performance, which can be mainly attributed to the potential‐concentration profile associated with the active material and the ohmic voltage shift under high currents; the difference in chemical diffusion coefficients during lithiation and de‐lithiation also plays a role. This clarifies that the charge and discharge rates of lithium‐ion‐battery electrodes should be evaluated separately due to the asymmetric effect in the electrochemical system.  相似文献   

14.
The intercalation of solvated sodium ions into graphite from ether electrolytes was recently discovered to be a surprisingly reversible process. The mechanisms of this “cointercalation reaction” are poorly understood and commonly accepted design criteria for graphite intercalation electrodes do not seem to apply. The excellent reversibility despite the large volume expansion, the small polarization and the puzzling role of the solid electrolyte interphase (SEI) are particularly striking. Here, in situ electrochemical dilatometry, online electrochemical mass spectrometry (OEMS), a variety of other methods among scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X‐ray diffraction (XRD) as well as theory to advance the understanding of this peculiar electrode reaction are used. The electrode periodically “breathes” by about 70–100% during cycling yet excellent reversibility is maintained. This is because the graphite particles exfoliate to crystalline platelets but do not delaminate. The speed at which the electrode breathes strongly depends on the state of discharge/charge. Below 0.5 V versus Na+/Na, the reaction behaves more pseudocapacitive than Faradaic. Despite the large volume changes, OEMS gas analysis shows that electrolyte decomposition is largely restricted to the first cycle only. Combined with TEM analysis and the electrochemical results, this suggests that the reaction is likely the first example of a SEI‐free graphite anode.  相似文献   

15.
The solid electrolyte interphase (SEI) spontaneously formed on anode surfaces as a passivation layer plays a critical role in the lithium dissolution and deposition upon discharge/charge in lithium ion batteries and lithium‐metal batteries. The formation kinetics and failure of the SEI films are the key factors determining the safety, power capability, and cycle life of lithium ion and lithium‐metal batteries. Since SEI films evolve with the volumetric and interfacial changes of anodes, it is technically challenging in experimental study of SEI kinetics. Here operando observations are reported of SEI formation, growth, and failure at a high current density by utilizing a mass‐sensitive Cs‐corrected scanning transmission electron microscopy. The sub‐nano‐scale observations reveal a bilayer hybrid structure of SEI films and demonstrate the radical assisted SEI growth after the SEI thickness beyond the electron tunneling regime. The failure of SEI films is associated with rapid dissolution of inorganic layers when they directly contact with the electrolyte in broken SEI films. The initiation of cracks in SEI films is caused by heterogeneous volume changes of the electrodes during delithiation. These microscopic insights have important implications in understanding SEI kinetics and in developing high‐performance anodes with the formation of robust SEI films.  相似文献   

16.
Silicon has been intensively pursued as the most promising anode material for Li‐ion batteries due to its high theoretical capacity of 3579 mAh/g. Micro‐sized Si–C composites composed of nanoscale primary building blocks are attractive Si‐based anodes for practical application because they not only achieve excellent cycling stability, but also offer both gravimetric and volumetric capacity. However, the effects of key parameters in designing such materials on their electrochemical performance are unknown and how to optimize them thus remains to be explored. Herein, the influence of Si nanoscale building block size and carbon coating on the electrochemical performance of the micro‐sized Si–C composites is investigated. It is found that the critical Si building block size is 15 nm, which enables a high capacity without compromising the cycling stability, and that carbon coating at higher temperature improves the first cycle coulombic efficiency (CE) and the rate capability. Corresponding reasons underlying electrochemical performance are revealed by various characterizations. Combining both optimized Si building block size and carbon coating temperature, the resultant composite can sustain 600 cycles at 1.2 A/g with a fixed lithiation capacity of 1200 mAh/g, the best cycling performance with such a high capacity for micro‐sized Si‐based anodes.  相似文献   

17.
High‐performance flexible energy‐storage devices have great potential as power sources for wearable electronics. One major limitation to the realization of these applications is the lack of flexible electrodes with excellent mechanical and electrochemical properties. Currently employed batteries and supercapacitors are mainly based on electrodes that are not flexible enough for these purposes. Here, a three‐dimensionally interconnected hybrid hydrogel system based on carbon nanotube (CNT)‐conductive polymer network architecture is reported for high‐performance flexible lithium ion battery electrodes. Unlike previously reported conducting polymers (e.g., polyaniline, polypyrrole, polythiophene), which are mechanically fragile and incompatible with aqueous solution processing, this interpenetrating network of the CNT‐conducting polymer hydrogel exibits good mechanical properties, high conductivity, and facile ion transport, leading to facile electrode kinetics and high strain tolerance during electrode volume change. A high‐rate capability for TiO2 and high cycling stability for SiNP electrodes are reported. Typically, the flexible TiO2 electrodes achieved a capacity of 76 mAh g–1 in 40 s of charge/discharge and a high areal capacity of 2.2 mAh cm–2 can be obtained for flexible SiNP‐based electrodes at 0.1C rate. This simple yet efficient solution process is promising for the fabrication of a variety of high performance flexible electrodes.  相似文献   

18.
Narrow electrochemical stability window (1.23 V) of aqueous electrolytes is always considered the key obstacle preventing aqueous sodium‐ion chemistry of practical energy density and cycle life. The sodium‐ion water‐in‐salt electrolyte (NaWiSE) eliminates this barrier by offering a 2.5 V window through suppressing hydrogen evolution on anode with the formation of a Na+‐conducting solid‐electrolyte interphase (SEI) and reducing the overall electrochemical activity of water on cathode. A full aqueous Na‐ion battery constructed on Na0.66[Mn0.66Ti0.34]O2 as cathode and NaTi2(PO4)3 as anode exhibits superior performance at both low and high rates, as exemplified by extraordinarily high Coulombic efficiency (>99.2%) at a low rate (0.2 C) for >350 cycles, and excellent cycling stability with negligible capacity losses (0.006% per cycle) at a high rate (1 C) for >1200 cycles. Molecular modeling reveals some key differences between Li‐ion and Na‐ion WiSE, and identifies a more pronounced ion aggregation with frequent contacts between the sodium cation and fluorine of anion in the latter as one main factor responsible for the formation of a dense SEI at lower salt concentration than its Li cousin.  相似文献   

19.
Although the rechargeable lithium–oxygen (Li–O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon‐based air‐electrode, Li metal anode, and electrodes, toward reduced oxygen species. Here a simple one‐step in situ electrochemical precharging strategy is demonstrated to generate thin protective films on both carbon nanotubes (CNTs), air‐electrodes and Li metal anodes simultaneously under an inert atmosphere. Li–O2 cells after such pretreatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity‐limited protocol of 1000 mA h g?1 and 500 mA h g?1, respectively, which is far more than those without pretreatment. The thin‐films formed from decomposition of electrolyte during in situ electrochemical precharging processes in an inert environment, can protect both CNTs air‐electrode and Li metal anode prior to conventional Li–O2 discharge/charge cycling, where reactive reduced oxygen species are formed. This work provides a new approach for protection of carbon‐based air‐electrodes and Li metal anodes in practical Li–O2 batteries, and may also be applied to other battery systems.  相似文献   

20.
Lithium metal anodes are expected to drive practical applications that require high energy‐density storage. However, the direct use of metallic lithium causes safety concerns, low rate capabilities, and poor cycling performance due to unstable solid electrolyte interphase (SEI) and undesired lithium dendrite growth. To address these issues, a radio frequency sputtered graphite‐SiO2 ultrathin bilayer on a Li metal chips is demonstrated, for the first time, as an effective SEI layer. This leads to a dendrite free uniform Li deposition to achieve a stable voltage profile and outstanding long hours plating/stripping compared to the bare Li. Compared to a bare Li anode, the graphite‐SiO2 bilayer modified Li anode coupled with lithium nickel cobalt manganese oxide cathode (NMC111) and lithium titanate shows improved capacity retention, higher capacity at higher rates, longer cycling stability, and lower voltage hysteresis. Graphite acts as an electrical bridge between the plated Li and Li electrode, which lowers the impedance and buffers the volume expansion during Li plating/stripping. Adding an ultrathin SiO2 layer facilitates Li‐ion diffusion and lithiation/delithiation, provides higher electrolyte affinity, higher chemical stability, and higher Young's modulus to suppress the Li dendrite growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号