首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
综述了近年来从可再生生物质资源生产新型绿色平台化合物乙酰丙酸及其主要应用领域的国内外研究及开发的进展,讨论了乙酰丙酸及其衍生物在新型燃料、新一代光动力药物和农用化学品、新材料等方面的应用前景,对我国开展这一领域的研究提出了建议。  相似文献   

2.
生物质转化制备精细化学品是解决石油能源危机的重要途径之一。其中,纤维素及半纤维素转化合成呋喃基化学品与木质素转化制酚类化合物是主要的反应路线,特别是借助催化技术加速生物质转化更是当今化学领域的研究重点;依据催化反应体系的不同,对近年来用于生物质催化转化的反应媒介以及催化剂研究进展进行了综述,并对未来生物质催化转化研究方向的发展前景进行了展望。  相似文献   

3.
    
Depolymerization of lignin biomass to its value-added chemicals and fuels is pivotal for achieving the goals for sustainable society, and therefore has acquired key interest among the researchers worldwide. A number of distinct approaches have evolved in literature for the deconstruction of lignin framework to its mixture of complex constituents in recent decades. Among the existing practices, special attention has been devoted for robust site selective chemical transformation in the complex structural frameworks of lignin. Despite the initial challenges over a period of time, oxidation and oxidative cleavage process of aromatic building blocks of lignin biomass toward the fine chemical synthesis and fuel generation has improved substantially. The development has improved in terms of cost effectiveness, milder reaction conditions, and purity of compound individuals. These aforementioned oxidative protocols mainly involve the breaking of C-C and C-O bonds of complex lignin frameworks. More precisely in the line with environmentally friendly greener approach, the catalytic oxidation/oxidative cleavage reactions have received wide spread interest for their mild and selective nature toward the lignin depolymerization. This mini-review aims to provide an overview of recent developments in the field of oxidative depolymerization of lignin under greener and environmentally benign conditions. Also, these oxidation protocols have been discussed in terms of scalability and recyclability as catalysts for different fields of applications.  相似文献   

4.
刘德华  李昌珠 《生物工程学报》2015,31(10):1411-1414
生物能源领域的研究和产业开发在近年得到了快速发展,呈现出系统性和多元性的趋势。2014年10月17–19日,第四届生物质能源技术国际会议-暨第八届国际生物能源会议(ICBT/WBS 2014)在长沙市举行。本次会议由中国可再生能源学会生物质能专业委员会、生物质能源产业技术创新战略联盟、欧洲生物质能产业协会、美国化学工程师学会和联合国开发计划署主办,由湖南省林业科学院和清华大学中国-巴西气候变化与能源技术创新研究中心承办。在会议优秀论文基础上,结合征稿出版了\"生物能源\"专刊。本专刊以综述和研究论文的形式介绍了国内在生物能源及相关领域的最新研究成果,包括生物质资源分析、预处理、燃料和化学品制备、副产品利用和策略研究等。  相似文献   

5.
王纪明  刘炜  徐鑫  张海波  咸漠 《生物工程学报》2013,29(10):1363-1373
人类正面临日益严峻的化石资源枯竭与环境恶化等问题,利用可再生的生物质资源生产高附加值平台化合物受到越来越多的关注。文中主要讨论了代谢工程大肠杆菌Escherichia coli生产各种高附加值有机酸 (琥珀酸、3-羟基丙酸、葡萄糖二酸)、醇 (甘油、木糖醇) 的最新研究进展。此外,还简述了2,5-呋喃二甲酸、天冬氨酸、谷氨酸、衣康酸、乙酰丙酸、3-羟基-γ-丁内酯、山梨糖醇等几种平台化合物的应用及生产方式,到目前为止未见使用E. coli生产这些化合物的报道。  相似文献   

6.
    
Lignin is an abundant and heterogeneous waste byproduct of the cellulosic industry, which has the potential of being transformed into valuable biochemicals via microbial fermentation. In this study, we applied a fast-pyrolysis process using softwood lignin resulting in a two-phase bio-oil containing monomeric and oligomeric aromatics without syringol. We demonstrated that an additional hydrodeoxygenation step within the process leads to an enhanced thermochemical conversion of guaiacol into catechol and phenol. After steam bath distillation, Pseudomonas putida KT2440-BN6 achieved a percent yield of cis, cis-muconic acid of up to 95 mol% from catechol derived from the aqueous phase. We next established a downstream process for purifying cis, cis-muconic acid (39.9 g/L) produced in a 42.5 L fermenter using glucose and benzoate as carbon substrates. On the basis of the obtained values for each unit operation of the empirical processes, we next performed a limited life cycle and cost analysis of an integrated biotechnological and chemical process for producing adipic acid and then compared it with the conventional petrochemical route. The simulated scenarios estimate that by attaining a mixture of catechol, phenol, cresol, and guaiacol (1:0.34:0.18:0, mol ratio), a titer of 62.5 (g/L) cis, cis-muconic acid in the bioreactor, and a controlled cooling of pyrolysis gases to concentrate monomeric aromatics in the aqueous phase, the bio-based route results in a reduction of CO2-eq emission by 58% and energy demand by 23% with a contribution margin for the aqueous phase of up to 88.05 euro/ton. We conclude that the bio-based production of adipic acid from softwood lignins brings environmental benefits over the petrochemical procedure and is cost-effective at an industrial scale. Further research is essential to achieve the proposed cis, cis-muconic acid yield from true lignin-derived aromatics using whole-cell biocatalysts.  相似文献   

7.
    
The grasslands of the northern Great Plains (NGP) region of North America are considered endangered ecosystems and priority conservation areas yet have great ecological and economic importance. Grasslands in the NGP are no longer self‐regulating adaptive systems. The challenges to these grasslands are widespread and serious (e.g. climate change, invasive species, fragmentation, altered disturbance regimes, and anthropogenic chemical loads). Because the challenges facing the region are dynamic, complex, and persistent, a paradigm shift in how we approach restoration and management of the grasslands in the NGP is imperative. The goal of this article is to highlight four key points for land managers and restoration practitioners to consider when planning management or restoration actions. First, we discuss the appropriateness of using historical fidelity as a restoration or management target because of changing climate, widespread pervasiveness of invasive species, the high level of fragmentation, and altered disturbance regimes. Second, we highlight ecosystem resilience and long‐term population persistence as alternative targets. Third, because the NGP is so heavily impacted with anthropogenic chemical loading, we discuss the risks of ecological traps and extinction debt. Finally, we highlight the importance of using adaptive management and having patience during restoration and management. Consideration of these four points will help management and restoration of grasslands move toward a more successful and sustainable future. Although we specifically focus on the NGP of North America, these same issues and considerations apply to grasslands and many other ecosystems globally.  相似文献   

8.
木质素的生物合成及其调控研究进展   总被引:12,自引:1,他引:12       下载免费PDF全文
木质素是植物体中仅次于纤维素的一种重要大分子有机物质,具有重要生物学功能,其3种主要单体的生物合成途径已经基本清楚。从木质素生物合成及基因工程在调控木质素生物合成中的作用等方面的研究进展进行了综述,并提出了存在的问题及对策。  相似文献   

9.
    
For algal biofuels to become a commercially viable and sustainable means of decreasing greenhouse gas emissions, growers are going to need to design feedstocks that achieve at least three characteristics simultaneously as follows: attain high yields; produce high quality biomass; and remain stable through time. These three qualities have proven difficult to achieve simultaneously under the ideal conditions of the laboratory, much less under field conditions (e.g., outdoor culture ponds) where feedstocks are exposed to highly variable conditions and the crop is vulnerable to invasive species, disease, and grazers. Here, we show that principles from ecology can be used to improve the design of feedstocks and to optimize their potential for “multifunctionality.” We performed a replicated experiment to test these predictions under outdoor conditions. Using 80 ponds of 1,100 L each, we tested the hypotheses that polycultures would outperform monocultures in terms of the following functions: biomass production, yield of biocrude from biomass, temporal stability, resisting population crashes, and resisting invasions by unwanted species. Overall, species richness improved stability, biocrude yield, and resistance to invasion. While this suggests that polycultures could outperform monocultures on average, invasion resistance was the only function where polycultures outperformed the best single species in the experiment. Due to tradeoffs among different functions that we measured, no species or polyculture was able to maximize all functions simultaneously. However, diversity did enhance the potential for multifunctionality—the most diverse polyculture performed more functions at higher levels than could any of the monocultures. These results are a key finding for ecological design of sustainable biofuel systems because they show that while a monoculture may be the optimal choice for maximizing short‐term biomass production, polycultures can offer a more stable crop of the desired species over longer periods of time.  相似文献   

10.
    
Summary In the corpora cardiaca of the insect Leucophaea the administration of serotonin elicits ultrastructural features indicative of the extrusion of neurosecretory material by exocytosis. The response to the stimulus and the process of extrusion seem to occur at considerable speed. Nearly all of the 30 test animals, fixed at various intervals starting as early as 3 min after the injection of the drug, show granules captured at the moment of leaving the axon as well as fully exteriorized secretory material. The fact that many of these granules are much smaller than the typical neurosecretory type speaks for intracellular fragmentation of the latter prior to the discharge of this cellular product. After 25 min or more the extruded electron dense structures show signs of breakdown. The apparent speed of these phenomena accounts for the dearth of omega-type configurations observed in unstimulated specimens of this species. The possible relationship between the membrane phenomena involved in exocytosis and the transient protrusions of bounding membranes of neurosecretory granules described in earlier papers remains to be clarified.Supported by N.S.F. research grant BMS 74-12456  相似文献   

11.
The catechol 2,3-dioxygenase (C23O) gene in naphthalene catabolic plasmid pND6-1 of Pseudomonas sp. ND6 was cloned and sequenced. The C23O gene was consisted of 924 nucleotides and encoded a polypeptide of molecular weight 36 kDa containing 307 amino acid residues. The C23O of Pseudomonas sp. ND6 exhibited 93% and 89% identities in amino acid sequence with C23Os encoded by naphthalene catabolic plasmid NAH7 from Pseudomonas putida G7 and the chromosome of Pseudomonas stutzeri AN10 respectively. The Pseudomonas sp. ND6 C23O gene was overexpressed in Escherichia coli DH 5α using the lac promoter of pUC18, and its gene product was purified by DEAE-Sephacel and Phenyl-Sepharose CL-4B chromatography. The enzymology experiments indicated that the specific activity and thermostability of C23O from Pseudomonas sp. ND6 were better than those of C23O from Pseudomonas putida G7.  相似文献   

12.
    
Understanding of how the plant cell walls of different plant species respond to pretreatment can help improve saccharification in bioconversion processes. Here, we studied the chemical and structural modifications in lignin and hemicellulose in hydrothermally pretreated poplar and wheat straw using wet chemistry and 2D heteronuclear single quantum coherence nuclear magnetic resonance (NMR) and their effects on cellulose conversion. Increased pretreatment severity reduced the levels of β─O─4 linkages with concomitant relatively increased levels of β─5 and β─β structures in the NMR spectra. β─5 structures appeared at medium and high severities for wheat straw while only β─β structures were observed at all pretreatment severities for poplar. These structural differences accounted for the differences in cellulose conversion for these biomasses at different severities. Changes in the hemicellulose component include a complete removal of arabinosyl and 4-O-methyl glucuronosyl substituents at low and medium pretreatment severities while acetyl groups were found to be relatively resistant toward hydrothermal pretreatment. This illustrates the importance of these groups, rather than xylan content, in the detrimental role of xylan in cellulose saccharification and helps explain the higher poplar recalcitrance compared to wheat straw. The results point toward the need for both enzyme preparation development and pretreatment technologies to target specific plant species.  相似文献   

13.
14.
通过微生物发酵的方法生产大宗化学品和天然产物能够部分替代石油化工炼制和植物提取。合成生物学技术的发展极大地提高了构建微生物细胞工厂生产大宗化学品和天然产物的能力。一方面综述了合成生物学在构建细胞工厂时的关键技术,包括最优合成途径的设计、合成途径的创建与优化、细胞性能的优化;另一方面,介绍了应用这些技术构建细胞工厂生产燃料化学品、大宗化学品和天然产物的典型案例。  相似文献   

15.
Five fractions with lignin peroxidase activity were isolated by FPLC-Mono Q from a Streptomyces viridosporus culture. F4 and F5 showed the highest specific activity and degree of protein homogeneity by chromatofocusing, IEF- and gradient-PAGE. The individual analysis of F4 and F5 by FPLC-Superdex 75, showed MW that were multiples to each other (68,000; 23,000; 12,000), although by SDS PAGE a sole MW of 13,500 was obtained, indicating a monomer based structure. The amino-acid composition of F5 showed absence of sulfur amino acids.  相似文献   

16.
模拟水生态系统及其在环境研究中的应用   总被引:4,自引:0,他引:4  
随着70年代污染生态毒理学的发展,微宇宙作为评价化学品的环境影响的有力工具日益受到重视。由于从点源和非点源释放的化学物质可经直接或间接途径进入水生态系统,水生微宇宙在环境研究中的应用发展很快。早期的研究工作侧重于化学污染物在水环境的归宿。自70年代末以来,研究注意力逐渐集中于有毒物质在水生态系统内不同生物学组织水平上的生态学效应。本文分下列4个方面进行述评:(1)关于模拟生态系统的若干基本概念;(2)应用于环境研究的不同类型水生微宇宙;(3)尚有争议的若干问题;(4)水生微宇宙技术应用的新动向和展望。  相似文献   

17.
    
The chemical industry is currently reliant on a historically inexpensive, petroleum-based carbon feedstock that generates a small collection of platform chemicals from which highly efficient chemical conversions lead to the manufacture of a large variety of chemical products. Recently, a number of factors have coalesced to provide the impetus to explore alternative renewable sources of carbon. Here we discuss the potential impact on the chemical industry of shifting from non-renewable carbon sources to renewable carbon sources. This change to the manufacture of chemicals from biological carbon sources will provide an opportunity for the biological research community to contribute fundamental knowledge concerning carbon metabolism and its regulation. We discuss whether fundamental biological research into metabolic processes at a holistic level, made possible by completed genome sequences and integrated with detailed structural understanding of biocatalysts, can change the chemical industry from being dependent on fossil-carbon feedstocks to using biorenewable feedstocks. We illustrate this potential by discussing the prospect of building a platform technology based upon a concept of combinatorial biosynthesis, which would explore the enzymological flexibilities of polyketide biosynthesis.  相似文献   

18.
Summary Peroxidases are essential enzymes in biodegradation of lignin and lignite which have been investigated intensively in the white-rot fungi. This is the first report of purification and characterization of lignin peroxidase from Penicillium sp. P6 as lignite degradation fungus. The results indicated that the lignin peroxidase of Penicillium decumbens P6 had physical and chemical properties and a N-terminal amino acid sequence different from the lignin peroxidases of white-rot fungi. The lignin peroxidase was isolated from a liquid culture of P. decumbens P6. This enzyme had a molecular weight of 46.3 KDa in SDS-PAGE and exhibited greater activity, temperature stability and wider pH range than those previously reported. The isolation procedure involved (NH4)2SO4 precipitation, ion-exchange chromatography on DEAE-cellulose and CM-cellulose, gel filtration on Sephadex G-100, and non-denaturing, discontinuous polyacrylamide gel electrophoresis. The K m and V max values of this enzyme using veratryl alcohol as substrate were 0.565 mmol L −1 and 0.088 mmol (mg protein) −1 min −1 respectively. The optimum pH of P6 lignin peroxidase was 4.0, and 70.6 of the relative activity was remained at pH 9.0. The optimum temperature of the enzyme was 45 °C.  相似文献   

19.
    
The biomass production and biochemical properties of marine and freshwater species of green macroalgae (multicellular algae), cultivated in outdoor conditions, were evaluated to assess the potential conversion into high-energy liquid biofuels, specifically biocrude and biodiesel and the value of these products. Biomass productivities were typically two times higher for marine macroalgae (8.5–11.9 g m−2 d−1, dry weight) than for freshwater macroalgae (3.4–5.1 g m−2 d−1, dry weight). The biochemical compositions of the species were also distinct, with higher ash content (25.5–36.6%) in marine macroalgae and higher calorific value (15.8–16.4 MJ kg−1) in freshwater macroalgae. Lipid content was highest for freshwater Oedogonium and marine Derbesia. Lipids are a critical organic component for biocrude production by hydrothermal liquefaction (HTL) and the theoretical biocrude yield was therefore highest for Oedogonium (17.7%, dry weight) and Derbesia (16.2%, dry weight). Theoretical biocrude yields were also higher than biodiesel yields for all species due to the conversion of the whole organic component of biomass, including the predominant carbohydrate fraction. However, all marine species had higher biomass productivities and therefore had higher projected biocrude productivities than freshwater species, up to 7.1 t of biocrude ha−1 yr−1 for Derbesia. The projected value of the six macroalgae was increased by 45–77% (up to US$7700 ha−1 yr−1) through the extraction of protein prior to the conversion of the residual biomass to biocrude. This study highlights the importance of optimizing biomass productivities for high-energy fuels and targeting additional coproducts to increase value.  相似文献   

20.
  总被引:6,自引:0,他引:6  
Four closely related cDNA clones encoding laccase isoenzymes from xylem tissues of yellow-poplar (Ltlacc2.1–4) were identified and sequenced. The inferred yellow-poplar laccase gene products were highly related to one another (79–91% at the amino acid level) and showed significant similarity to other blue copper oxidases, especially with respect to the copper-binding domains. The encoded proteins had N-terminal signal sequences and 17–19 potential N-linked glycosylation sites. The mature proteins were predicted to have molecular masses of ca. 61 kDa (unglycosylated) and high isoelectric points (pI 9.3–9.5). The canonical copper ligands were conserved, with the exception of a Leu residue associated with the axial position of the Type-1 cupric ion. The residue at this position has been proposed to influence the redox potential of Type-1 cupric ions. Northern blot analysis revealed that the yellow-poplar laccase genes are differentially expressed in xylem tissues. The genes were verified as encoding active laccases by heterologous expression in tobacco cells and demonstration of laccase activity in extracts from transformed tobacco cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号