首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
5-Hydroxymethylfurfural (HMF) is a versatile platform chemical for a fossil free, bio-based chemical industry. HMF can be produced by using fructose as a feedstock. Using edible, first-generation biomass to produce chemicals has been questioned in terms of potential competition with food supply. Second-generation biomass like miscanthus could be an alternative. However, there is a lack of information if second-generation lignocellulosic biomass is a more sustainable feedstock to produce HMF. Therefore, a life cycle assessment was performed in this study to determine the environmental impacts of HMF production from miscanthus and to compare it with HMF from high-fructose corn syrup (HFCS). HFCS from either Hungary or Baden-Württemberg (Germany) was considered. Compared to the HFCS biorefineries the miscanthus concept is producing less emissions in all impact categories studied, except land occupation. Overall, the production and usage of second-generation biomass could be especially beneficial in areas where the use of N fertilizers is restricted. Besides, conclusions for the further development of the on-farm biorefinery concept were elaborated. For this purpose, process simulations from a previous study were used. Results of the previous study in terms of TEA and the current LCA study in terms of environmental sustainability indicate that the lignin depolymerization unit in the miscanthus biorefinery has to be improved. The scenario without lignin depolymerization performs better in all impact categories. The authors recommend to not further convert the lignin to products like phenol and other aromatic compounds. The results of the contribution analyses show that the major impact in the HMF production is caused by the auxiliary materials in the separation units and the required heat. Further technical development should focus on efficient heat as well as solvent use and solvent recovery. At this point further optimizations will lead to reduced emissions and costs at the same time.  相似文献   

2.
The forests in northwest Republic of Congo contain a number of herbaceous swamp clearings that provide foraging sites for lowland gorillas (G.g. gorilla). A 10-month study at the Maya Nord clearing (Parc National d'Odzala) showed that feeding activities occupied 72% of the time visiting gorillas spent on the clearing. They fed on four plant species: Enydra fluctuans (Asteraceae), Cyperus sp., Pycreus mundtii, and Rhynchospora corymbosa (Cyperaceae) among the 45 species recorded on the clearing. These clearing food species have higher mineral contents (especially Na and Ca) than the dominant Marantaceae species (Haumania liebrechtsiana) that constituted a staple food plant for gorillas in this forest. They also have higher potassium contents and contain less lignin than non-eaten clearing items/species. Finally, the most actively searched for clearing food (Enydra fluctuans) was characterized by the highest amount of Na and Ca. These results suggest that the mineral content (especially in Na, Ca, and/or K) could determine the feeding selectivity of gorillas at the clearing. They also tend to confirm that the amount of fiber plays a deterrent role in food selectivity, as has been found by many authors. The high density of gorillas in that region could result from the combination of the large areas of Marantaceae forests that provide abundant though monotonous food, and the number of clearings that provide sufficient mineral supplies. Clearings should thus be considered as key habitats for the conservation of gorillas.  相似文献   

3.
Aims: A newly isolated strain of Rhizoctonia ssp. was used for the production of extracellular inulinase. Previously, the qualitative effects of some carbon and nitrogen sources from fermentative media and the physicochemical parameters for growth were established by Plackett–Burman analysis, and the main parameters that affect extracellular inulinase yield were identified. In this study, the quantitative effect of the carbon to nitrogen ratio in the fermentative medium and the growth temperature were studied and optimized using central composite design and response surface methodology. Methods and results: On the basis of optimization, the maximum extracellular inulinase activity was achieved when 2·5–6·5% buckwheat flour was used as a single carbon source and 4·6–5·0% yeast extract was used as nitrogen source, by submerged cultivation, after 48 h at an incubation temperature between 15 and 27·5°C. Conclusions: Under the fermentative conditions established in this study, a maximum extracellular inulinase yield of 1·8 UI ml?1 was achieved. Rhizoctonia ssp. strain can be used for extracellular inulinase production. Also, buckwheat flour proved to be an inexpensive and abundant substrate suitable for obtaining inulinase. Significance and impact of the study: Inulinases are versatile tools for biotechnology as they can be used for a wide range of applications, including production of bioethanol, fructose syrup and inulo‐oligosaccharides, lactic acid, citric acid and butanediol.  相似文献   

4.
The distillate produced by deodorization of palm oil (DDPO) is a waste that corresponds to 4% of the product formed in this process. DDPO is 83% free of fatty acids (FFA), making it a good material for biodiesel production. In this paper, a catalyst prepared from a waste material, Amazon flint kaolin, was used for the esterification of DDPO with methanol. Leached metakaolin treated at 950 °C and activated with 4 M sulfuric acid (labeled as MF9S4) offered maximum esterification activity (92.8%) at 160 °C with a DDPO:methanol molar ratio of 1:60 and a 4-h reaction time. The influences of reaction parameters, such as the molar ratio of the reactants, alcohol chain length, temperature, time and the presence of glycerides and unsaponifiable matter, have also been investigated. Based on the catalytic results, esterification of DDPO using MF9S4 can be a cheaper alternative for production of sustainable fuels.  相似文献   

5.
Using Escherichia coli for installing and maintaining anaerobiosis for hydrogen production by Clostridium acetobutylicum ATCC 824 is a cost-effective approach for industrial hydrogen production, as it does not require reducing agents or sparging with inert gases. This study was devoted for investigating the feasibility for installing and maintaining anaerobiosis of hydrogen production by C. acetobutylicum ATCC 824 when using E. coli HD701 utilizable versus non utilizable sugars as a-carbon source. Using E. coli HD701 for installing anaerobiosis showed a comparable hydrogen production yield and efficiency to the use of reducing agents and nitrogen sparging in case of hydrogen production from the E. coli HD701 non utilizable sugars. In contrast, using E. coli HD701 for installing anaerobiosis showed a lower hydrogen production yield and efficiency than the use of reducing agents and nitrogen sparging in case of using glucose as a substrate. This is possibly because E. coli HD701 when using glucose compensate for the substrate, and produce hydrogen with lower efficiency than C. acetobutylicum ATCC 824. These results indicated that the use of E. coli HD701 for installing anaerobiosis would not be economically feasible when using E. coli HD701 utilizable sugars as a carbon source. In contrast, the use of this approach for installing anaerobiosis for hydrogen production from sucrose and starch would have a high potency for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号