首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Rechargeable zinc–air batteries may become safe, sustainable, low‐cost, and energy‐dense alternatives to Li‐ion batteries for many applications, but problems associated with today's air‐breathing electrodes limit zinc–air performance. To overcome this challenge, researchers have investigated hundreds of air‐breathing electrode variations over the last decade. Unfortunately, the efficacy of these variations remains ambiguous due to nonstandardized cycling protocols that map to areal‐energy values spanning five orders of magnitude. To compete with Li‐ion batteries, researchers should cycle zinc–air cells at 35 mWh cmgeo?2, but only 8, of the 100 publications reviewed here, breach this threshold. Once the community cycles zinc–air cells at the proposed areal energy and better understands failure mechanisms, lab‐scale results will translate to practical advancements.  相似文献   

4.
Stretchable devices need elastic hydrogel electrolyte as an essential component, while most hydrogels will lose their stretchability after being incorporated with strong alkaline solution. This is why highly stretchable zinc–air batteries have never been reported so far. Herein, super‐stretchable, flat‐ (800% stretchable) and fiber‐shaped (500% stretchable) zinc–air batteries are first developed by designing an alkaline‐tolerant dual‐network hydrogel electrolyte. In the dual‐network hydrogel electrolyte, sodium polyacrylate (PANa) chains contribute to the formation of soft domains and the carboxyl groups neutralized by hydroxyls as well as cellulose as potassium hydroxide stabilizer are responsible for vastly enhanced alkaline tolerance. The obtained super‐stretchable, flat zinc–air battery exhibits a high power density of 108.6 mW?cm?2, increasing to 210.5 mW?cm?2 upon being 800% stretched. Similar phenomena are observed for the 500% stretchable fiber‐shaped batteries. The devices can maintain stable power output even after being heavily deformed benefiting from the highly soft, alkaline‐tolerant hydrogel electrolyte developed. A bendable battery‐display system and water proof weavable fiber zinc–air battery are also demonstrated. This work will facilitate the progress of using zinc–air battery powering flexible electronics and smart clothes. Moreover, the developed alkaline‐tolerant super‐stretchable electrolyte can also be applied for many other alkaline electrolyte‐based energy storage/conversion devices.  相似文献   

5.
6.
7.
Aqueous zinc‐ion batteries (AZIBs) have attracted considerable attention as promising next‐generation power sources because of the abundance, low cost, eco‐friendliness, and high security of Zn resources. Recently, vanadium‐based materials as cathodes in AZIBs have gained interest owing to their rich electrochemical interaction with Zn2+ and high theoretical capacity. However, existing AZIBs are still far from meeting commercial requirements. This article summarizes recent advances in the rational design of vanadium‐based materials toward AZIBs. In particular, it highlights various tactics that have been reported to increase the intercalation space, structural stability, and the diffusion ability of the guest Zn2+, as well as explores the structure‐dependent electrochemical performance and the corresponding energy storage mechanism. Furthermore, this article summarizes recent achievements in the optimization of aqueous electrolytes and Zn anodes to resolve the issues that remain with Zn anodes, including dendrite formation, passivation, corrosion, and the low coulombic efficiency of plating/stripping. The rationalization of these research findings can guide further investigations in the design of cathode/anode materials and electrolytes for next‐generation AZIBs.  相似文献   

8.
9.
Rational design and exploration of robust and low‐cost bifunctional oxygen reduction/evolution electrocatalysts are greatly desired for metal–air batteries. Herein, a novel high‐performance oxygen electrode catalyst is developed based on bimetal FeCo nanoparticles encapsulated in in situ grown nitrogen‐doped graphitic carbon nanotubes with bamboo‐like structure. The obtained catalyst exhibits a positive half‐wave potential of 0.92 V (vs the reversible hydrogen electrode, RHE) for oxygen reduction reaction, and a low operating potential of 1.73 V to achieve a 10 mA cm?2 current density for oxygen evolution reaction. The reversible oxygen electrode index is 0.81 V, surpassing that of most highly active bifunctional catalysts reported to date. By combining experimental and simulation studies, a strong synergetic coupling between FeCo alloy and N‐doped carbon nanotubes is proposed in producing a favorable local coordination environment and electronic structure, which affords the pyridinic N‐rich catalyst surface promoting the reversible oxygen reactions. Impressively, the assembled zinc–air batteries using liquid electrolytes and the all‐solid‐state batteries with the synthesized bifunctional catalyst as the air electrode demonstrate superior charging–discharging performance, long lifetime, and high flexibility, holding great potential in practical implementation of new‐generation powerful rechargeable batteries with portable or even wearable characteristic.  相似文献   

10.
11.
Ongoing interest is focused on aqueous zinc ion batteries (ZIBs) for mass‐production energy storage systems as a result of their affordability, safety, and high energy density. Ensuring the stability of the electrode/electrolyte interface is of particular importance for prolonging the cycling ability to meet the practical requirements of rechargeable batteries. Zinc anodes exhibit poor cycle life and low coulombic efficiency, stemming from the severe dendrite growth, and irreversible byproducts such as H2 and inactive ZnO. Great efforts have recently been devoted to zinc anode protection for designing high‐performance ZIBs. However, the intrinsic origins of zinc plating/striping are poorly understood, which greatly delay its potential applications. Rather than focusing on battery metrics, this review delves deeply into the underlying science that triggers the deposition/dissolution of zinc ions. Furthermore, recent advances in modulating the zinc coordination environment, uniforming interfacial electric fields, and inducing zinc deposition are highlighted and summarized. Finally, perspectives and suggestions are provided for designing highly stable zinc anodes for the industrialization of the aqueous rechargeable ZIBs in the near future.  相似文献   

12.
Constructing highly active electrocatalysts with superior stability at low cost is a must, and vital for the large‐scale application of rechargeable Zn–air batteries. Herein, a series of bifunctional composites with excellent electrochemical activity and durability based on platinum with the perovskite Sr(Co0.8Fe0.2)0.95P0.05O3?δ (SCFP) are synthesized via a facile but effective strategy. The optimal sample Pt‐SCFP/C‐12 exhibits outstanding bifunctional activity for the oxygen reduction reaction and oxygen evolution reaction with a potential difference of 0.73 V. Remarkably, the Zn–air battery based on this catalyst shows an initial discharge and charge potential of 1.25 and 2.02 V at 5 mA cm?2, accompanied by an excellent cycling stability. X‐ray photoelectron spectroscopy, X‐ray absorption near‐edge structure, and extended X‐ray absorption fine structure experiments demonstrate that the superior performance is due to the strong electronic interaction between Pt and SCFP that arises as a result of the rapid electron transfer via the Pt? O? Co bonds as well as the higher concentration of surface oxygen vacancies. Meanwhile, the spillover effect between Pt and SCFP also can increase more active sites via lowering energy barrier and change the rate‐determining step on the catalysts surface. Undoubtedly, this work provides an efficient approach for developing low‐cost and highly active catalysts for wider application of electrochemical energy devices.  相似文献   

13.
The rechargeable Li–O2 battery has attracted much attention over the past decades owing to its overwhelming advantage in theoretical specific energy density compared to state‐of‐the‐art Li‐ion batteries. Practical application requires non‐aqueous Li–O2 batteries to stably obtain high reversible capacity, which highly depends on a suitable electrolyte system. Up to now, some critical challenges remain in developing desirable non‐aqueous electrolytes for Li–O2 batteries. Herein, we will review the current status and challenges in non‐aqueous liquid electrolytes, ionic liquid electrolytes and solid‐state electrolytes of Li–O2 batteries, as well as the perspectives on these issues and future development.  相似文献   

14.
The future large‐scale deployment of rechargeable zinc–air batteries requires the development of cheap, stable, and efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, a highly efficient bifunctional electrocatalyst is prepared by depositing 3–5 nm NiFe layered double hydroxide (NiFe‐LDH) nanoparticles on Co,N‐codoped carbon nanoframes (Co,N‐CNF). The NiFe‐LDH/Co,N‐CNF electrocatalyst displayed an OER overpotential of 0.312 V at 10 mA cm?2 and an ORR half‐wave potential of 0.790 V. The outstanding performance of the electrocatalyst is attributable to the high electrical conductivity and excellent ORR activity of Co,N‐CNF, together with the strong anchoring of 3–5 nm NiFe‐LDH nanoparticles, which preserves active sites. Inspired by the excellent OER and ORR performance of NiFe‐LDH/Co,N‐CNF, a prototype rechargeable zinc–air battery is developed. The battery exhibited a low discharge–charge voltage gap (1.0 V at 25 mA cm?2) and long‐term cycling durability (over 80 h), and superior overall performance to a counterpart battery constructed using a mixture of IrO2 and Pt/C as the cathode. The strategy developed here can easily be adapted to synthesize other bifunctional CNF‐based hybrid electrodes for ORR and OER, providing a practical route to more efficient rechargeable zinc–air batteries.  相似文献   

15.
The oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in zinc–air batteries (ZABs) require highly efficient, cost‐effective, and stable electrocatalysts as alternatives to high cost and low poison resistant platinum group metals (PGM) catalysts. Although nitrogen‐doped carbon nanotube (NCNT) arrays are now capable of catalyzing ORR efficiently, their hydrophobic surface and base‐growth mode are found to limit the catalytic performance in the practical ZABs. Here, the concept of an apically dominant mechanism in improving the catalytic performance of NCNT by precisely encapsulating CoNi nanoparticles (NPs) within the apical domain of NCNT on the Ni foam (denoted as CoNi@NCNT/NF) is demonstrated. The CoNi@NCNT/NF exhibits a more excellent catalytic performance toward both ORR and OER than that of traditional NCNT derived from the base‐growth method. The ZAB coin cell using CoNi@NCNT/NF as an air electrode shows a peak power density of 127 mW cm?2 with an energy density of 845 Wh kgZn?1 and rechargeability over 90 h, which outperforms the performance of PGM catalysts. Density functional theory calculations reveal that the ORR catalytic performance of the CoNi@NCNT/NF is mainly attributed to the synergetic contributions from NCNT and the apical active sites on NCNT near to CoNi NPs.  相似文献   

16.
Zinc‐based batteries have a high capacity and are safe, cost‐effective, environmentally‐friendly, and capable of scalable production. However, dendrite formation and poor reversibility hinder their performance. Metal‐organic framework (MOF)‐based Zn anodes are made by wet chemistry to address these issues. These MOF‐based anodes exhibit high efficiency during Zn plating‐stripping and prevent dendrite formation, as shown by ex situ SEM analysis. The practicality of the MOF‐based anodes is demonstrated in aqueous Zn ion batteries, which show improved performance including specific capacity, cycle life, and safety relative to the pristine Zn anode due to their hydrophilic and porous surface. These results, along with the easy scalability of the process, demonstrate the high potential of MOF‐modified Zn anodes for use in dendrite‐free, higher‐performance, Zn‐based energy storage systems.  相似文献   

17.
Rational design and construction of a multifunctional electrocatalyst featuring with high efficiency and low cost is fundamentally important to realize new energy technologies. Herein, a trifunctional electrocatalyst composed of FePx nanoparticles and Fe–N–C moiety supported on the N‐, P‐codoped carbon (NPC) is masterly synthesized by a facile one‐pot pyrolysis of the mixture of tannic acid, ferrous chloride, and sodium hydrogen phosphate. The synergy of each component in the FePx/Fe–N–C/NPC catalyst renders high catalytic activities and excellent durability toward both oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The electrocatalytic performance and practicability of the robust FePx/Fe–N–C/NPC catalyst are further investigated under the practical operation conditions. Particularly, the overall water splitting cell assembled by the FePx/Fe–N–C/NPC catalyst only requires a voltage of 1.58 V to output the benchmark current density of 10 mA cm?2, which is superior to that of IrO2–Pt/C‐based cell. Moreover, the FePx/Fe–N–C/NPC‐based zinc–air batteries deliver high round‐trip efficiency and remarkable cycling stability, much better than that of Pt/C–IrO2 pair‐based batteries. This work offers a new strategy to design and synthesize highly effective multifunctional electrocatalysts using cheaper tannic acid derived carbon as support applied in electrochemical energy devices.  相似文献   

18.
Flexible Zn‐based batteries are regarded as promising alternatives to flexible lithium‐ion batteries for wearable electronics owing to the natural advantages of zinc, such as environmental friendliness and low cost. In the past few years, flexible Zn‐based batteries have been studied intensively and exciting achievements have been obtained in this field. However, the development of flexible Zn‐based batteries is still at an early stage. The challenges of developing flexible lithium‐ion batteries are presented here. Then, a brief overview of recent progress in flexible zinc secondary batteries from the perspective of advanced materials and some issues that remain to be addressed are discussed.  相似文献   

19.
Rational design and massive production of bifunctional catalysts with superior oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities are essential for developing metal–air batteries and fuel cells. Herein, controllable large‐scale synthesis of sulfur‐doped CaMnO3 nanotubes is demonstrated via an electrospinning technique followed by calcination and sulfurization treatment. The sulfur doping can not only replace oxygen atoms to increase intrinsic electrical conductivity but also introduce abundant oxygen vacancies to provide enough catalytically active sites, which is further demonstrated by density functional theory calculation. The resulting sulfur‐modified CaMnO3 (CMO/S) exhibits better electrocatalytic activity for ORR and OER in alkaline solution with higher stability performance than the pristine CMO. These results highlight the importance of sulfur treatment as a facile yet effective strategy to improve the ORR and OER catalytic activity of the pristine CaMnO3. As a proof‐of‐concept, a rechargeable Zn–air battery using the bifunctional catalyst exhibits a small charge–discharge voltage polarization, and long cycling life. Furthermore, a solid‐state flexible and rechargeable Zn–air battery gives superior discharge–charge performance and remarkable stability. Therefore, the CMO/S nanotubes might be a promising replacement to the Pt‐based electrocatalysts for metal–air batteries and fuel cells.  相似文献   

20.
A reversible room‐temperature aluminum–sulfur (Al‐S) battery is demonstrated with a strategically designed cathode structure and an ionic liquid electrolyte. Discharge–charge mechanism of the Al‐S battery is proposed based on a sequence of electrochemical, microscopic, and spectroscopic analyses. The electrochemical process of the Al‐S battery involves the formation of a series of polysulfides and sulfide. The high‐order polysulfides (Sx2?, x ≥ 6) are soluble in the ionic liquid electrolyte. Electrochemical transitions between S62? and the insoluble low‐order polysulfides or sulfide (Sx 2?, 1 ≤ x < 6) are reversible. A single‐wall carbon nanotube coating applied to the battery separator helps alleviate the diffusion of the polysulfide species and reduces the polarization behavior of the Al‐S batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号