首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The collective redox activities of transition‐metal (TM) cations and oxygen anions have been shown to increase charge storage capacity in both Li‐rich layered and cation‐disordered rock‐salt cathodes. Repeated cycling involving anionic redox is known to trigger TM migration and phase transformation in layered Li‐ and Mn‐rich (LMR) oxides, however, detailed mechanistic understanding on the recently discovered Li‐rich rock‐salt cathodes is largely missing. The present study systematically investigates the effect of oxygen redox on a Li1.3Nb0.3Mn0.4O2 cathode and demonstrates that performance deterioration is directly correlated to the extent of oxygen redox. It is shown that voltage fade and hysteresis begin only after initiating anionic redox at high voltages, which grows progressively with either deeper oxidation of oxygen at higher potential or extended cycling. In contrast to what is reported on layered LMR oxides, extensive TM reduction is observed but phase transition is not detected in the cycled oxide. A densification/degradation mechanism is proposed accordingly which elucidates how a unique combination of extensive chemical reduction of TM and reduced quality of the Li percolation network in cation‐disordered rock‐salts can lead to performance degradation in these newer cathodes with 3D Li migration pathways. Design strategies to achieve balanced capacity and stability are also discussed.  相似文献   

2.
Lithium‐rich layered oxides are promising candidate cathode materials for the Li‐ion batteries with energy densities above 300 Wh kg?1. However, issues such as the voltage hysteresis and decay hinder their commercial applications. Due to the entanglement of the transition metal (TM) migration and the anionic redox upon lithium extraction at high potentials, it is difficult to recognize the origin of these issues in conventional Li‐rich layered oxides. Herein, Li2MoO3 is chosen since prototype material to uncover the reason for the voltage hysteresis as the TM migration and anionic redox can be eliminated below 3.6 V versus Li+/Li in this material. On the basis of comprehensive investigations by neutron powder diffraction, scanning transmission electron microscopy, synchrotron X‐ray absorption spectroscopy, and density functional theory calculations, it is clarified that the ordering–disordering transformation of the Mo3O13 clusters induced by the intralayer Mo migration is responsible for the voltage hysteresis in the first cycle; the hysteresis can take place even without the anionic redox or the interlayer Mo migration. A similar suggestion is drawn for its iso‐structured Li2RuO3 (C2/c). These findings are useful for understanding of the voltage hysteresis in other complicated Li‐rich layered oxides.  相似文献   

3.
Li‐rich layered metal oxides are one type of the most promising cathode materials in lithium‐ion batteries but suffer from severe voltage decay during cycling because of the continuous transition metal (TM) migration into the Li layers. A Li‐rich layered metal oxide Li1.2Ti0.26Ni0.18Co0.18Mn0.18O2 (LTR) is hereby designed, in which some of the Ti4+ cations are intrinsically present in the Li layers. The native Li–Ti cation mixing structure enhances the tolerance for structural distortion and inhibits the migration of the TM ions in the TMO2 slabs during (de)lithiation. Consequently, LTR exhibits a remarkable cycling stability of 97% capacity retention after 182 cycles, and the average discharge potential drops only 90 mV in 100 cycles. In‐depth studies by electron energy loss spectroscopy and aberration‐corrected scanning transmission electron microscopy demonstrate the Li–Ti mixing structure. The charge compensation mechanism is uncovered with X‐ray absorption spectroscopy and explained with the density function theory calculations. These results show the superiority of introducing transition metal ions into the Li layers in reinforcing the structural stability of the Li‐rich layered metal oxides. These findings shed light on a possible path to the development of Li‐rich materials with better potential retention and a longer lifespan.  相似文献   

4.
Li and Mn‐rich layered oxides, xLi2MnO3·(1–x)LiMO2 (M=Ni, Mn, Co), are promising cathode materials for Li‐ion batteries because of their high specific capacity that can exceed 250 mA h g?1. However, these materials suffer from high 1st cycle irreversible capacity, gradual capacity fading, low rate capability, a substantial charge‐discharge voltage hysteresis, and a large average discharge voltage decay during cycling. The latter detrimental phenomenon is ascribed to irreversible structural transformations upon cycling of these cathodes related to potentials ≥4.5 V required for their charging. Transition metal inactivation along with impedance increase and partial layered‐to‐spinel transformation during cycling are possible reasons for the detrimental voltage fade. Doping of Li, Mn‐rich materials by Na, Mg, Al, Fe, Co, Ru, etc. is useful for stabilizing capacity and mitigating the discharge‐voltage decay of xLi2MnO3·(1–x)LiMO2 electrodes. Surface modifications by thin coatings of Al2O3, V2O5, AlF3, AlPO4, etc. or by gas treatment (for instance, by NH3) can also enhance voltage and capacity stability during cycling. This paper describes the recent literature results and ongoing efforts from our groups to improve the performance of Li, Mn‐rich materials. Focus is also on preparation of cobalt‐free cathodes, which are integrated layered‐spinel materials with high reversible capacity and stable performance.  相似文献   

5.
Ni‐rich layered oxides and Li‐rich layered oxides are topics of much research interest as cathodes for Li‐ion batteries due to their low cost and higher discharge capacities compared to those of LiCoO2 and LiMn2O4. However, Ni‐rich layered oxides have several pitfalls, including difficulty in synthesizing a well‐ordered material with all Ni3+ ions, poor cyclability, moisture sensitivity, a thermal runaway reaction, and formation of a harmful surface layer caused by side reactions with the electrolyte. Recent efforts towards Ni‐rich layered oxides have centered on optimizing the composition and processing conditions to obtain controlled bulk and surface compositions to overcome the capacity fade. Li‐rich layered oxides also have negative aspects, including oxygen loss from the lattice during first charge, a large first cycle irreversible capacity loss, poor rate capability, side reactions with the electrolyte, low tap density, and voltage decay during extended cycling. Recent work on Li‐rich layered oxides has focused on understanding the surface and bulk structures and eliminating the undesirable properties. Followed by a brief introduction, an account of recent developments on the understanding and performance gains of Ni‐rich and Li‐rich layered oxide cathodes is provided, along with future research directions.  相似文献   

6.
Li‐rich manganese based oxides (LRMOs) are considered an attractive high‐capacity cathode for advanced Li‐ion batteries; however, their poor cyclability and gradual voltage fading have hindered their practical applications. Herein, an efficient and facile strategy is proposed to stabilize the lattice structure of LRMOs by surface modification of polyacrylic acid (PAA). The PAA‐coated LRMO electrode exhibits only 104 mV of the voltage fading after 100 cycles and 88% capacity retention over 500 cycles. The structural stability is attributed to the carboxyl groups in PAA chains reacting with oxygen species on the surface of LRMO to form a uniform and tightly coated film, which significantly suppresses the dissolution of transition metal elements from the cathode materials into the electrolyte. Importantly, a H+/Li+ exchange reaction takes place between the LRMO and PAA, generating a proton‐doped surface layer. Density functional theory calculations and experimental evidence demonstrates that the H+ ions in the surface lattice efficiently inhibit the migration of transition metal ions, leading to a stabilized lattice structure. This surface modification approach may provide a new route to building a stable Li‐rich oxide cathode with high capacity retention and low voltage fading for practical Li‐ion battery applications.  相似文献   

7.
The chemical processes occurring on the surface of cathode materials during battery cycling play a crucial role in determining battery's performance. However, the understanding of such surface chemistry is far from clear due to the complexity of redox chemistry during battery charge/discharge. Through intensive aberration corrected STEM investigation on ten layered oxide cathode materials, two important findings on the pristine oxides are reported. First, Ni and Co show strong plane selectivity when building up their respective surface segregation layers (SSLs). Specifically, Ni‐SSL is exclusively developed on (200)m facet in Li–Mn‐rich oxides (monoclinic C2/m symmetry) and on (012)h facet in Mn–Ni equally rich oxides (hexagonal R‐3m symmetry), while Co‐SSL has a strong preference to (20?2)m plane with minimal Co‐SSL also developed on some other planes in Li–Mn‐rich cathodes. Structurally, Ni‐SSLs tend to form spinel‐like lattice while Co‐SSLs are in a rock‐salt‐like structure. Second, by increasing Ni concentration in these layered oxides, Ni and Co SSLs can be suppressed and even eliminated. The findings indicate that Ni and Co SSLs are tunable through controlling particle morphology and oxide composition, which opens up a new way for future rational design and synthesis of cathode materials.  相似文献   

8.
Li‐rich layered metal oxides have attracted much attention for their high energy density but still endure severe capacity fading and voltage decay during cycling, especially at elevated temperature. Here, facile surface treatment of Li1.17Ni0.17Co0.17Mn0.5O2 (0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2) spherical cathode material is designed to address these drawbacks by hybrid surface protection layers composed of Mg2+ pillar and Li‐Mg‐PO4 layer. As a result, the surface coated Li‐rich cathode material exhibits much enhanced cycling stability at 60 °C, maintaining 72.6% capacity retention (180 mAh g?1) between 3.0 and 4.7 V after 250 cycles. More importantly, 88.7% average discharge voltage retention can be obtained after the rigorous cycle test. The strategy developed here with novel hydrid surface protection effect can provide a vital approach to inhibit the undesired side reactions and structural deterioration of Li‐rich cathode materials and may also be useful for other layered oxides to increase their cycling stability at elevated temperature.  相似文献   

9.
The Li‐rich layer‐structured oxides are regarded one of the most promising candidates of cathode materials for high energy‐density Li‐ion batteries. However, the uninterrupted migration of the transition metal (TM) ions during cycling and the resultant continuous fading of their discharge potentials bring challenges to the battery design and impede their commercial applications. Various efforts have been taken to suppress the migration of the TM ions such as surface modification and elemental substitution, but no success has been achieved to date. Another strategy hereby is proposed to address these issues, in which the TM migration is promoted and the layered material is transformed to a rocksalt in the first few charge/discharge cycles by specially designing a novel Li‐rich layer‐structured Li1.2Mo0.6Fe0.2O2 on the basis of density functional theory calculations. With such, the continuous falling of the discharge potential is detoured due to enhanced completion of the cation mixing. In‐depth studies such as aberration‐corrected scanning transmission electron microscopy confirm the drastic structural change at the atomic scale, and in situ X‐ray absorption spectroscopy and Mössbauer spectroscopy clarify its charge compensation mechanism. This new strategy provides revelation for the development of the Li‐rich layered oxides with mitigated potential decay and a longer lifespan.  相似文献   

10.
The anionic redox activity in lithium‐rich layered oxides has the potential to boost the energy density of lithium‐ion batteries. Although it is widely accepted that the anionic redox activity stems from the orphaned oxygen energy level, its regulation and structural stabilization, which are essential for practical employment, remain still elusive, requiring an improved fundamental understanding. Herein, the oxygen redox activity for a wide range of 3d transition‐metal‐based Li2TMO3 compounds is investigated and the intrinsic competition between the cationic and anionic redox reaction is unveiled. It is demonstrated that the energy level of the orphaned oxygen state (and, correspondingly, the activity) is delicately governed by the type and number of neighboring transition metals owing to the π‐type interactions between Li? O? Li and M t2g states. Based on these findings, a simple model that can be used to estimate the anionic redox activity of various lithium‐rich layered oxides is proposed. The model explains the recently reported significantly different oxygen redox voltages or inactivity in lithium‐rich materials despite the commonly observed Li? O? Li states with presumably unhybridized character. The discovery of hidden factors that rule the anionic redox in lithium‐rich cathode materials will aid in enabling controlled cumulative cationic and anionic redox reactions.  相似文献   

11.
Li and Mn‐rich layered cathodes, despite their high specific capacity, suffer from capacity fading and discharge voltage decay upon cycling. Both specific capacity and discharge voltage of Li and Mn‐rich cathodes are stabilized upon cycling by optimized Al doping. Doping Li and Mn‐rich cathode materials Li1.2Ni0.16Mn0.56Co0.08O2 by Al on the account of manganese (as reflected by their stoichiometry) results in a decrease in their specific capacity but increases pronouncedly their stability upon cycling. Li1.2Ni0.16Mn0.51Al0.05Co0.08O2 exhibits 96% capacity retention as compared to 68% capacity retention for Li1.2Ni0.16Mn0.56Co0.08O2 after 100 cycles. This doping also reduces the decrease in the average discharge voltage upon cycling, which is the longstanding fatal drawback of these Li and Mn‐rich cathode materials. The electrochemical impedance study indicates that doping by Al has a surface stabilization effect on these cathode materials. The structural analysis of cycled electrodes by Raman spectroscopy suggests that Al doping also has a bulk stabilizing effect on the layered LiMO2 phase resulting in the better electrochemical performance of Al doped cathode materials as compared to the undoped counterpart. Results from a prolonged systematic work on these cathode materials are presented and the best results that have ever been obtained are reported.  相似文献   

12.
Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0.8Sr0.2MnO3?y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material. The LSM is Mn? O? M bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g?1 at 1 C (260 mA g?1) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g?1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries.  相似文献   

13.
Li‐rich layered materials are considered to be the promising low‐cost cathodes for lithium‐ion batteries but they suffer from poor rate capability despite of efforts toward surface coating or foreign dopings. Here, spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres are reported as a new high‐rate cathode material for Li‐ion batteries. The synthetic procedure is relatively simple, involving the formation of uniform carbonate precursor under solvothermal conditions and its subsequent transformation to an assembled microsphere that integrates a spinel‐like component with a layered component by a heat treatment. When calcined at 700 °C, the amount of transition metal Mn and Co in the Li‐Mn‐Co‐O microspheres maintained is similar to at 800 °C, while the structures of constituent particles partially transform from 2D to 3D channels. As a consequence, when tested as a cathode for lithium‐ion batteries, the spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres obtained at 700 °C show a maximum discharge capacity of 185.1 mA h g?1 at a very high current density of 1200 mA g?1 between 2.0 and 4.6 V. Such a capacity is among the highest reported to date at high charge‐discharge rates. Therefore, the present spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres represent an attractive alternative to high‐rate electrode materials for lithium‐ion batteries.  相似文献   

14.
Triggering oxygen‐related activity is demonstrated as a promising strategy to effectively boost energy density of layered cathodes for sodium‐ion batteries. However, irreversible lattice oxygen loss will induce detrimental structure distortion, resulting in voltage decay and cycle degradation. Herein, a layered structure P2‐type Na0.66Li0.22Ru0.78O2 cathode is designed, delivering reversible oxygen‐related and Ru‐based redox chemistry simultaneously. Benefiting from the combination of strong Ru 4d‐O 2p covalency and stable Li location within the transition metal layer, reversible anionic/cationic redox chemistry is achieved successfully, which is proved by systematic bulk/surface analysis by in/ex situ spectroscopy (operando Raman and hard X‐ray absorption spectroscopy, etc.). Moreover, the robust structure and reversible phase transition evolution revealed by operando X‐ray diffraction further establish a high degree reversible (de)intercalation processes (≈150 mAh g?1, reversible capacity) and long‐term cycling (average capacity drop of 0.018%, 500 cycles).  相似文献   

15.
The quest for high energy density and high power density electrode materials for lithium‐ion batteries has been intensified to meet strongly growing demand for powering electric vehicles. Conventional layered oxides such as Co‐rich LiCoO2 and Ni‐rich Li(NixMnyCoz)O2 that rely on only transition metal redox reaction have been faced with growing constraints due to soaring price on cobalt. Therefore, Mn‐rich electrode materials excluding cobalt would be desirable with respect to available resources and low cost. Here, the strategy of achieving both high energy density and high power density in Mn‐rich electrode materials by controlling the solubility of atoms between phases in a composite is reported. The resulting Mn‐rich material that is composed of defective spinel phase and partially cation‐disordered layered phase can achieve the highest energy density, ≈1100 W h kg?1 with superior power capability up to 10C rate (3 A g?1) among other reported Mn‐rich materials. This approach provides new opportunities to design Mn‐rich electrode materials that can achieve high energy density and high power density for Li‐ion batteries.  相似文献   

16.
Cobalt‐free layered lithium‐rich nickel manganese oxides, Li[LixNiyMn1?x?y]O2 (LLNMO), are promising positive electrode materials for lithium rechargeable batteries because of their high energy density and low materials cost. However, substantial voltage decay is inevitable upon electrochemical cycling, which makes this class of materials less practical. It has been proposed that undesirable voltage decay is linked to irreversible structural rearrangement involving irreversible oxygen loss and cation migration. Herein, the authors demonstrate that the voltage decay of the electrode is correlated to Mn4+/Mn3+ redox activation and subsequent cation disordering, which can be remarkably suppressed via simple compositional tuning to induce the formation of Ni3+ in the pristine material. By implementing our new strategy, the Mn4+/Mn3+ reduction is subdued by an alternative redox reaction involving the use of pristine Ni3+ as a redox buffer, which has been designed to be widened from Ni3+/Ni4+ to Ni2+/Ni4+, without compensation for the capacity in principle. Negligible change in the voltage profile of modified LLNMO is observed upon extended cycling, and manganese migration into the lithium layer is significantly suppressed. Based on these findings, we propose a general strategy to suppress the voltage decay of Mn‐containing lithium‐rich oxides to achieve long‐lasting high energy density from this class of materials.  相似文献   

17.
Neutron diffraction under operando battery cycling is used to study the lithium and oxygen dynamics of high Li‐rich Li(Lix/3Ni(3/8‐3x/8)Co(1/4‐x/4)Mn(3/8+7x/24)O2 (x = 0.6, HLR) and low Li‐rich Li(Lix/3Ni(1/3‐x/3)Co(1/3‐x/3)Mn(1/3+x/3)O2 (x = 0.24, LLR) compounds that exhibit different degrees of oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show largely contrasting changes for the two cathodes where the LLR exhibits larger movement of oxygen and lattice contractions in comparison to the HLR that maintains relatively constant lattice parameters and oxygen position during the high voltage plateau until the end of charge. Density functional theory calculations show the presence of oxygen vacancy during the high voltage plateau; changes in the lattice parameters and oxygen position are consistent with experimental observations. Lithium migration kinetics for the Li‐rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer, and transition metal layer is related to the different charge and discharge characteristics. At the beginning of charging, the lithium extraction predominately occurs within the lithium layer. Once the high voltage plateau is reached, the lithium extraction from the lithium layer slows down and extraction from the transition metal layer evolves at a faster rate.  相似文献   

18.
Li2MnO3 is a critical component in the family of “Li‐excess” materials, which are attracting attention as advanced cathode materials for Li‐ion batteries. Here, first‐principle calculations are presented to investigate the electrochemical activity and structural stability of stoichiometric LixMnO3 (0 ≤ x ≤ 2) as a function of Li content. The Li2MnO3 structure is electrochemically activated above 4.5 V on delithiation and charge neutrality in the bulk of the material is mainly maintained by the oxidization of a portion of the oxygen ions from O2? to O1?. While oxygen vacancy formation is found to be thermodynamically favorable for x < 1, the activation barriers for O2? and O1? migration remain high throughout the Li com­position range, impeding oxygen release from the bulk of the compound. Defect layered structures become thermodynamically favorable at lower Li content (x < 1), indicating a tendency towards the spinel‐like structure transformation. A critical phase transformation path for forming nuclei of spinel‐like domains within the matrix of the original layered structure is proposed. Formation of defect layered structures during the first charge is shown to manifest in a depression of the voltage profile on the first discharge, providing one possible explanation for the observed voltage fade of the Li‐excess materials.  相似文献   

19.
Various doped materials have been investigated to improve the structural stability of layered transition metal oxides for lithium‐ion batteries. Most doped materials are obtained through solid state methods, in which the doping of cations is not strictly site selective. This paper demonstrates, for the first time, an in situ electrochemical site‐selective doping process that selectively substitutes Li+ at Li sites in Mn‐rich layered oxides with Mg2+. Mg2+ cations are electrochemically intercalated into Li sites in delithiated Mn‐rich layered oxides, resulting in the formation of [Li1?xMgy][Mn1?zMz]O2 (M = Co and Ni). This Mg2+ intercalation is irreversible, leading to the favorable doping of Mg2+ at the Li sites. More interestingly, the amount of intercalated Mg2+ dopants increases with the increasing amount of Mn in Li1?x[Mn1?zMz]O2, which is attributed to the fact that the Mn‐to‐O electron transfer enhances the attractive interaction between Mg2+ dopants and electronegative Oδ? atoms. Moreover, Mg2+ at the Li sites in layered oxides suppresses cation mixing during cycling, resulting in markedly improved capacity retention over 200 cycles. The first‐principle calculations further clarify the role of Mg2+ in reduced cation mixing during cycling. The new concept of in situ electrochemical doping provides a new avenue for the development of various selectively doped materials.  相似文献   

20.
Layered lithium‐ and manganese‐rich oxides (LMROs), described as xLi2MnO3·(1–x)LiMO2 or Li1+yM1–yO2 (M = Mn, Ni, Co, etc., 0 < x <1, 0 < y ≤ 0.33), have attracted much attention as cathode materials for lithium ion batteries in recent years. They exhibit very promising capacities, up to above 300 mA h g?1, due to transition metal redox reactions and unconventional oxygen anion redox reaction. However, they suffer from structural degradation and severe voltage fade (i.e., decreasing energy storage) upon cycling, which are plaguing their practical application. Thus, this review will aim to describe the pristine structure, high‐capacity mechanisms and structure evolutions of LMROs. Also, recent progress associated with understanding and mitigating the voltage decay of LMROs will be discussed. Several approaches to solve this problem, such as adjusting cycling voltage window and chemical composition, optimizing synthesis strategy, controlling morphology, doping, surface modification, constructing core‐shell and layered‐spinel hetero structures, are described in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号