首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium chloride (LiCl) is a drug used to treat bipolar disorder, but has side effects in the female reproductive system. Although lithium is known to decrease folliculogenesis and induce follicular atresia in rodent ovaries, its cellular and molecular effects in the ovary have not yet been addressed. To investigate these effects, 23‐day‐old immature female rats were injected with 10 IU pregnant mare serum gonadotropin (PMSG), followed by injections of 250 mg/kg LiCl every 12 hr for four doses. Ovaries were removed 40 and 48 hr after PMSG administration and prepared for histology, immunohistochemistry, Western blotting, and DNA laddering analysis. Our results showed that in the ovaries of LiCl‐treated rats, few antral but more atretic follicles were present compared to those of the control rats. The induction of atresia by LiCl was further confirmed by the presence of DNA fragmentation, accompanied by a reduced level of 17β‐estradiol in the serum. At the cellular level, lithium significantly decreased the number of proliferating cell nuclear antigen (PCNA)‐positive cells and conversely increased the number of TUNEL‐positive cells in the granulosa layer of the antral follicles. At the molecular level, lithium increased the level of phosphorylated glycogen synthase kinase‐3β, and unexpectedly decreased the expression of active (stabilized) β‐catenin. Altogether, our results indicate that lithium disrupts the balance between proliferation and apoptosis in granulosa cells, leading to follicular atresia possibly through the reduction in both the stabilized β‐catenin and 17β‐estradiol synthesis. Mol. Reprod. Dev. 80: 286–296, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Antimicrobial peptides play important roles in the innate immune system of various organisms, and they may also be considered to prevent the organisms from infections. In particular, β‐defensins, mainly produced in epithelial cells, are recognized as one of the major antimicrobial peptides in mammals, including humans. In this study, we showed that Lactobacillus helveticus SBT2171 (LH2171), one of the several species of lactic acid bacteria, upregulates the production of β‐defensins in oral epithelial cells in vitro. Moreover, LH2171 reduced the increase of proinflammatory cytokine expression, induced by Porphyromonas gingivalis stimulation, in gingival epithelial cells. These data suggested that LH2171 suppresses P. gingivalis‐induced inflammation by upregulating the expression of β‐defensins in gingival epithelial cells. We subsequently investigated the effects of LH2171 in vivo and revealed that β‐defensin expression was increased in the oral cavities of LH2171‐fed mice. Furthermore, LH2171 decreased alveolar bone loss, gingival inflammation, and amounts of P. gingivalis‐specific 16S ribosomal RNA in the gingiva of P. gingivalis‐inoculated mice. Taken together, our results showed that LH2171 upregulates the expression of β‐defensins in oral cavity, thereby decreasing the number of P. gingivalis consequently ameliorating the experimental periodontal disease.  相似文献   

3.
This study examined the effects of β‐carotene on antioxidant status in rats with chronic alcohol consumption. At the beginning of experiment (week 0), according to both the plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, rats (n = 24) were divided into 3 groups and fed with a standard diet (group C), a diet containing ethanol (group E), or a diet containing ethanol and β‐carotene (group E+B). After 10 weeks, plasma AST and ALT, fat accumulation in the liver, antioxidant enzyme activities in erythrocytes and the liver, malondialdehyde (MDA), and α‐tocopherol and retinol in plasma and hepatic samples were analyzed. The chronic alcohol diet significantly increased AST and ALT levels in plasma, and these changes were prevented by supplementing the diet with β‐carotene. Glutathione (GSH) in erythrocytes and in the liver was significantly elevated in rats fed with a diet containing β‐carotene. The results indicate that β‐carotene supplementation can prevent ethanol‐induced liver damage and increase GSH concentrations in erythrocytes and the liver. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid‐β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ‐secretase internalization. Co‐immunoprecipitation studies establish that γ‐secretase associates with CRFR1; this is mediated by β‐arrestin binding motifs. Additionally, CRFR1 and γ‐secretase co‐localize in lipid raft fractions, with increased γ‐secretase accumulation upon CRF treatment. CRF treatment also increases γ‐secretase activity in vitro, revealing a second, receptor‐independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ‐secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ‐secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ‐secretase.  相似文献   

6.
Canonical BMP and Wnt signaling pathways play critical roles in regulation of osteoblast function and bone formation. Recent studies demonstrate that BMP‐2 acts synergistically with β‐catenin to promote osteoblast differentiation. To determine the molecular mechanisms of the signaling cross‐talk between canonical BMP and Wnt signaling pathways, we have used primary osteoblasts and osteoblast precursor cell lines 2T3 and MC3T3‐E1 cells to investigate the effect of BMP‐2 on β‐catenin signaling. We found that BMP‐2 stimulates Lrp5 expression and inhibits the expression of β‐TrCP, the F‐box E3 ligase responsible for β‐catenin degradation and subsequently increases β‐catenin protein levels in osteoblasts. In vitro deletion of the β‐catenin gene inhibits osteoblast proliferation and alters osteoblast differentiation and reduces the responsiveness of osteoblasts to the BMP‐2 treatment. These findings suggest that BMP‐2 may regulate osteoblast function in part through modulation of the β‐catenin signaling. J. Cell. Biochem. 108: 896–905, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Oxysterols, such as 7β‐hydroxy‐cholesterol (7β‐OH) and cholesterol‐5β,6β‐epoxide (β‐epoxide), may have a central role in promoting atherogenesis. This is thought to be predominantly due to their ability to induce apoptosis in cells of the vascular wall and in monocytes/macrophages. Although there has been extensive research regarding the mechanisms through which oxysterols induce apoptosis, much remains to be clarified. Given that experimental evidence has long associated alterations of calcium (Ca2+) homeostasis to apoptotic cell death, the aim of the present study was to determine the influence of intracellular Ca2+ changes on apoptosis induced by 7β‐OH and β‐epoxide. Ca2+ responses in differentiated U937 cells were assessed by epifluorescence video microscopy, using the ratiometric dye fura‐2. Over 15‐min exposure of differentiated U937 cells to 30 μM of 7β‐OH induced a slow but significant rise in fura‐2 ratio. The Ca2+ channel blocker nifedipine and the chelating agent EGTA blocked the increase in cytoplasmic Ca2+. Moreover, dihydropyridine (DHP) binding sites identified with BODIPY‐FLX‐DHP were blocked following pretreatment with nifedipine, indicating that the influx of Ca2+ occurred through L‐type channels. However, following long‐term incubation with 7β‐OH, elevated levels of cytoplasmic Ca2+ were not maintained and nifedipine did not provide protection against apoptotic cell death. Our results indicate that the increase in Ca2+ may be an initial trigger of 7β‐OH–induced apoptosis, but following chronic exposure to the oxysterol, the influence of Ca2+ on apoptotic cell death appears to be less significant. In contrast, Ca2+ did not appear to be involved in β‐epoxide–induced apoptosis. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:324–332, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20295  相似文献   

8.
This study was designed to evaluate the effect of Z‐FA.FMK (benzyloxycarbonyl‐l ‐phenylalanyl‐alanine‐fluoromethylketone), a pharmacological inhibitor of cathepsin B, on the proliferation of duodenal mucosal epithelial cells and the cellular system that controls this mechanism in these cells in vivo. For this investigation, BALB/c male mice were divided into four groups. The first group received physiological saline, the second group was administered Z‐FA.FMK, the third group received d ‐GalN (d ‐galactosamine) and TNF‐α (tumour necrosis factor‐α) and the fourth group was given both d ‐GalN/TNF‐α and Z‐FA.FMK. When d ‐GalN/TNF‐α was administered alone, we observed an increase in IL‐1β‐positive and active NF‐κB‐positive duodenal epithelial cells, a decrease in PCNA (proliferative cell nuclear antigen)‐positive duodenal epithelial cells and an increase in degenerative changes in duodenum. On the other hand, Z‐FA.FMK pretreatment inhibited all of these changes. Furthermore, lipid peroxidation, protein carbonyl and collagen levels were increased, glutathione level and superoxide dismutase activity were decreased, while there was no change in catalase activity by d ‐GalN/TNF‐α injection. On the contrary, the Z‐FA.FMK pretreatment before d ‐GalN/TNF‐α blocked these effects. Based on these findings, we suggest that Z‐FA.FMK might act as a proliferative mediator which is controlled by IL‐1β through NF‐κB and oxidative stress in duodenal epithelial cells of d ‐GalN/TNF‐α‐administered mice.  相似文献   

9.
10.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Changes in gene expression of TGF‐β family members and their receptors in response to treatment with H2O2 and a calcium ionophore, A23187, were examined in C2C12 myoblasts and myotubes. The expression of Myf5, an initial regulator of myogenesis, was increased by A23187, and H2O2 inhibited the up‐regulation of Myf5. Treatment with H2O2 decreased the expression of MHC IIb, a protein component of the myofibrils, irrespective of the presence of A23187, suggesting an inhibitory role of oxidative stress for myogenesis. Expression of ligands and receptors for the TGF‐β family was modulated in response to H2O2 and A23187. Treatment with H2O2 decreased expression of TGF‐β3, BMP‐4, ALK4, ALK5, and ActRIIB, and increased expression of inhibin α and inhibin βA in either the myoblast stage or the myotube stage, or both. A23187 potentiated down‐regulation of BMP‐4 and ALK4 expression, and up‐regulation of TGF‐β1, TGF‐β2, inhibin α, inhibin βA, ALK2, and ALK3 expression. These results indicate that oxidative stress and Ca2+ influx affect expression of the TGF‐β family in C2C12 myoblasts and myotubes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A novel avian β‐defensin (AvBD), AvBD10, was discovered in the liver and bone marrow tissues from Chinese painted quail (Coturnix chinensis) in the present study. The complete nucleotide sequence of quail AvBD10 contains a 207‐bp open reading frame that encodes 68 amino acids. The quail AvBD10 was expressed widely in all the tissues from quails except the tongue, crop, breast muscle, and thymus and was highly expressed in the bone marrow. In contrast to the expression pattern of AvBD10 in tissues from quail, the chicken AvBD10 was expressed in all 21 tissues from the layer hens investigated, with a high level of expression in the kidney, lung, liver, bone marrow, and Harderian glands. Recombinant glutathione S‐transferase (GST)‐tagged AvBD10s of both quail and chicken were produced and purified by expression of the two cDNAs in Escherichia coli, respectively. In addition, peptide according to the respective AvBD10s sequence was synthesized, named synthetic AvBD10s. As expected, both recombinant GST‐tagged AvBD10s and synthetic AvBD10s of quail and chicken exhibited similar bactericidal properties against most bacteria, including Gram‐positive and Gram‐negative forms. However, no significant bactericidal activity was found for quail recombinant GST‐tagged AvBD10 against Salmonella choleraesuis or for chicken recombinant GST‐tagged AvBD10 against Proteus mirabilis. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2?/?) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2?/? mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2?/? mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2?/? mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (?Ψm) was reduced in ALDH2?/? mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2?/? mice following I/R stress.  相似文献   

14.
The oxidative stress caused by endothelial injury is involved in intimal hyperplasia (IH) in vein grafts. Mesenchymal stem cells (MSCs) can home to injured intima and promote endothelial repair. However, MSC apoptosis is increased accompanied by decreased functional activity under oxidative stress. Thus, we investigate whether tumour necrosis factor‐α (TNF‐α) can promote the survival and activity of MSCs under oxidative stress to reduce IH more effectively, and establish what role the NF‐κB pathway plays in this. In this study, we preconditioned MSCs with TNF‐α (TNF‐α‐PCMSCs) for 24 hrs and measured the activation of the IKK/NF‐κB pathway. EdU and transwell assays were performed to assess proliferation and migration of TNF‐α‐PCMSCs. Apoptosis and migration of TNF‐α‐PCMSCs were evaluated in conditions of oxidative stress by analysis of the expression of Bcl‐2 and CXCR4 proteins. TNF‐α‐PCMSCs were transplanted into a vein graft model, so that cell homing could be tracked, and endothelial apoptosis and IH of vein grafts were measured. The results demonstrated that TNF‐α promotes proliferation and migration of MSCs. Furthermore, survival and migration of TNF‐α‐PCMSCs under oxidative stress were both enhanced. A greater number of MSCs migrated to the intima of vein grafts after preconditioning with TNF‐α, and the formation of neointima was significantly reduced. These effects could be partially abolished by IKK XII (NF‐κB inhibitor). All these results indicate that preconditioning with TNF‐α can promote survival and migration of MSCs under oxidative stress via the NF‐κB pathway and thus attenuate IH of vein grafts.  相似文献   

15.
16.
The sry‐related high‐mobility box (SOX)‐2 protein has recently been proven to play a significant role in progression, metastasis, and clinical prognosis spanning several cancer types. Research on the role of SOX2 in melanoma is limited and currently little is known about the mechanistic function of this gene in this context. Here, we observed high expression of SOX2 in both human melanoma cell lines and primary melanomas in contrast to melanocytic nevi. This overexpression in melanoma can, in part, be explained by extra gene copy numbers of SOX2 in primary samples. Interestingly, we were able to induce SOX2 expression, mediated by SOX4, via TGF‐β1 stimulation in a time‐dependent manner. Moreover, the knockdown of SOX2 impaired TGF‐β‐induced invasiveness. This phenotype switch can be explained by SOX2‐mediated cross talk between TGF‐β and non‐canonical Wnt signaling. Thus, we propose that SOX2 is involved in the critical TGF‐β signaling pathway, which has been shown to correlate with melanoma aggressiveness and metastasis. In conclusion, we have identified a novel downstream factor of TGF‐β signaling in melanoma, which may have further implications in the clinic.  相似文献   

17.
Formation of dityrosine (DT) cross‐linkages in proteins is one of the most widely used markers of oxidative stress. Ribonuclease A (RNase A) has 6 Tyr residues and shows a characteristic DT fluorescence peak upon oxidation in addition to major changes in its secondary structure. DT formation can be prevented by using polyphenols (GA, ECG, and EGCG) which are known to have strong antioxidant activity. However, it has been observed that ECG and EGCG initiate protein oligomerization due to protein‐polyphenol cross‐linkages. To prevent the formation of such cross‐linkages we have used β‐cyclodextrin (β‐CD) to encapsulate the polyphenols and studied its antioxidant properties along with that of free polyphenols. The polyphenol/β‐cyclodextrin (β‐CD) inclusion complexes not only prevent DT formation but also reduce protein oligomerization. This may be attributed to the fact that the quinone forming rings of ECG and EGCG become encapsulated in the cavity of β‐CD and are no longer available for protein cross‐linking.  相似文献   

18.
19.
20.
Herein, we hypothesized that pro‐osteogenic MicroRNAs (miRs) could play functional roles in the calcification of the aortic valve and aimed to explore the functional role of miR‐29b in the osteoblastic differentiation of human aortic valve interstitial cells (hAVICs) and the underlying molecular mechanism. Osteoblastic differentiation of hAVICs isolated from human calcific aortic valve leaflets obtained intraoperatively was induced with an osteogenic medium. Alizarin red S staining was used to evaluate calcium deposition. The protein levels of osteogenic markers and other proteins were evaluated using western blotting and/or immunofluorescence while qRT‐PCR was applied for miR and mRNA determination. Bioinformatics and luciferase reporter assay were used to identify the possible interaction between miR‐29b and TGF‐β3. Calcium deposition and the number of calcification nodules were pointedly and progressively increased in hAVICs during osteogenic differentiation. The levels of osteogenic and calcification markers were equally increased, thus confirming the mineralization of hAVICs. The expression of miR‐29b was significantly increased during osteoblastic differentiation. Furthermore, the osteoblastic differentiation of hAVICs was significantly inhibited by the miR‐29b inhibition. TGF‐β3 was markedly downregulated while Smad3, Runx2, wnt3, and β‐catenin were significantly upregulated during osteogenic induction at both the mRNA and protein levels. These effects were systematically induced by miR‐29b overexpression while the inhibition of miR‐29b showed the inverse trends. Moreover, TGF‐β3 was a direct target of miR‐29b. Inhibition of miR‐29b hinders valvular calcification through the upregulation of the TGF‐β3 via inhibition of wnt/β‐catenin and RUNX2/Smad3 signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号