首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ternary approaches to solar cell design utilizing a small bandgap nonfullerene acceptor as the near infrared absorber to increase the short‐circuit current density always decreases the open‐circuit voltage. Herein, a highly efficient polymer solar cell with an impressive efficiency of 16.28 ± 0.20% enabled by an effective voltage‐increased ternary blended fullerene‐free material approach is reported. In this approach, the structural similarity between the host and the higher‐LUMO‐level guest enables the two acceptors to be synergized, obtaining increased open‐circuit voltage and fill factor and a small increase of short‐circuit current density. The same beneficial effects are demonstrated by using two host binary systems. The homogeneous fine film morphologies and the π–π stacking patterns of the host blend are well maintained, while larger donor and acceptor phases and increased lamellar crystallinity, increased charge mobilities, and reduced monomolecular recombination can be achieved upon addition of the guest nonfullerene acceptor. The increased charge mobilities and reduced monomolecular recombination not only contribute to the improved fill factor but also enable the best devices to be fabricated with a relatively thicker ternary blended active layer (110 vs 100 nm). This, combined with the absorption from the added guest acceptor, contribute to the increased short‐circuit current.  相似文献   

2.
Developing efficient organic solar cells (OSCs) with relatively thick active layer compatible with the roll to roll large area printing process is an inevitable requirement for the commercialization of this field. However, typical laboratory OSCs generally exhibit active layers with optimized thickness around 100 nm and very low thickness tolerance, which cannot be suitable for roll to roll process. In this work, high performance of thick‐film organic solar cells employing a nonfullerene acceptor F–2Cl and a polymer donor PM6 is demonstrated. High power conversion efficiencies (PCEs) of 13.80% in the inverted structure device and 12.83% in the conventional structure device are achieved under optimized conditions. PCE of 9.03% is obtained for the inverted device with active layer thickness of 500 nm. It is worth noting that the conventional structure device still maintains the PCE of over 10% when the film thickness of the active layer is 600 nm, which is the highest value for the NF‐OSCs with such a large active layer thickness. It is found that the performance difference between the thick active layer films based conventional and inverted devices is attributed to their different vertical phase separation in the active layers.  相似文献   

3.
The field of nonfullerene organic solar cells (OSCs) has seen an impressive progress, largely due to advances in high‐performance small molecule acceptors (SMAs). As a large portion of the solar energy is located in the near‐infrared region, it is important to develop ultralow‐bandgap SMAs that have extended absorption in the spectral range of 800–1000 nm to maximize light absorption and efficiencies. In this work, three low‐bandgap SMAs, namely, IXIC, IXIC‐2Cl, and IXIC‐4Cl, are designed and synthesized with same fused terthieno[3,2‐b]thiophene donor unit and different end groups (EGs). The three SMAs all have low optical bandgap (Eg) of 1.35, 1.30, and 1.25 eV, respectively. The chlorination on EGs can lower the energy level and broaden absorption range of the SMAs. As a result, the Voc of the devices is reduced but the Jsc is significantly increased. In addition, the addition of chlorine atoms can enhance π–π stacking and crystallinity of the SMAs, which result in high fill factors. Overall, the optimum EGs are monochlorine‐substituted IC and OSCs based on PBDB‐T:IXIC‐2Cl that can achieve remarkable power conversion efficiencies (PCEs) of 12.2%, which is one of the highest PCEs for nonfullerene organic solar cells based on low‐bandgap SMAs.  相似文献   

4.
Poly(3‐hexylthiophene) (P3HT)‐based organic solar cells (OSCs) have attracted much attention due to their advantages of low‐cost production and matured roll‐to‐roll manufacture. However, the efficiency of P3HT‐based OSCs lag much behind the non‐P3HT ones due to their negligible absorption of long wavelengths of light over 650 nm, high‐lying highest occupied molecular orbitals (HOMO), and difficulty of controlling morphology. In this study, the alkyl chains of the nonfullerene acceptors are replaced with alkoxy chains to achieve synergistic enhancement of all three parameters ( short circuit current density (JSC), open circuit voltage (VOC), and fill factor (FF)) and thus significant increase of power conversion efficiency for P3HT‐based OSCs. As a result, the OSCs exhibit a maxima efficiency of 6.6%. The P3HT‐based systems are systematically studied with optical spectroscopy, photoluminescence, cyclic voltametry, space charge limit current, grazing incident wide‐angle X‐ray scattering, transient absorption spectroscopy, transmission electron microscope, and atomic force microscopy to probe the mechanism, which reveal that introducing alkoxy chains simultaneously increases the energy levels of the HOMO and the lowest unoccupied molecular orbitals, enhances the light absorption, improves the rigidity of the backbone and charge transport mobility, and tunes the molecular orientation and film morphology, thus improving the photovoltaic performance. This contribution provides an important guidance in the design of novel nonfullerene acceptors for high‐performance P3HT‐based OSCs.  相似文献   

5.
A new n‐type organic semiconductor (n‐OS) acceptor IDTPC with n‐hexyl side chains is developed. Compared to side chains with 4‐hexylphenyl counterparts (IDTCN), such a design endows the acceptor of IDTPC with higher electron mobility, more ordered face‐on molecular packing, and lower band gap. Therefore, the IDTPC‐based polymer solar cells (PSCs) with a newly developed wide bandgap polymer PTQ10 as donor exhibit the maximum power conversion efficiency (PCE) of 12.2%, a near 65% improvement in PCE relative to the IDTCN‐based control device. Most importantly, the IDTPC‐based device is insensitive to the thickness of the active layer from 70 to 505 nm, which still gives a PCE of 10.0% with the active‐layer thickness of 400 nm. To the best of the authors' knowledge, a PCE of 10.0% is the highest value for the nonfullerene PSCs with an active layer thicker than 400 nm. These results reveal that the blend of PTQ10 and IDTPC exhibits great potential for highly efficient nonfullerene PSCs and large‐area device fabrication.  相似文献   

6.
A series of narrow bandgap electron acceptors is designed and synthesized for efficient near‐infrared (NIR) organic solar cells. Extending π‐conjugation of donor frameworks leads to an intense intramolecular charge transfer, resulting in broad absorption profiles with band edge reaching 950 nm. When blended with an electron donor polymer PTB7‐Th, IOTIC‐2F exhibits efficient charge transfer even with a small energetic offset, so as to achieve a large photogenerated current over 22 mA cm?2 with small energy losses (≈0.49 eV) in solar cell devices. With an intense NIR absorbance, PTB7‐Th:IOTIC‐2F‐based cells achieve a power conversion efficiency of 12.1% with good visible transparency (52% transmittance from 370 to 740 nm). Analysis of film morphology reveals that processing with solvent additives enhances crystalline features of acceptor components, while keeping an appropriate level of donor:acceptor intermixing in the binary blends. The incorporation of the third component, ITIC‐2F, into the PTB7‐Th:IOTIC‐2F blends increases the device efficiency up to 12.9%. The improvement is assigned to the cascaded energy‐level structure and desirable nanoscale phase separation of the ternary blends, which is beneficial to the photocurrent generation. This work provides an efficient molecular design strategy to optimize nonfullerene acceptor properties for efficient NIR organic photovoltaics.  相似文献   

7.
Compared with nonfullerene‐based polymer solar cells, all‐small‐molecule solar cells normally show low power conversion efficiencies (PCEs) due to their low fill factors (FFs). Molecular stacking orientation and phase separation are the main factors affecting the performance of all‐small‐molecule solar cells. In this work, two liquid‐crystalline small‐molecule donors are designed and synthesized and a novel nonfullerene acceptor with good crystallinity developed. Owing to the face‐on orientation of the component molecules and appropriate phase separation in the active layer, a high FF of over 70% and a PCE of 10.7% are obtained from the resulting solar cells; these values are among the best obtained thus far for all‐small‐molecule solar cells. The high FF reported here is significant for a further design of high‐performance all‐small‐molecule solar cells.  相似文献   

8.
Organic solar cells that are free of burn‐in, the commonly observed rapid performance loss under light, are presented. The solar cells are based on poly(3‐hexylthiophene) (P3HT) with varying molecular weights and a nonfullerene acceptor (rhodanine‐benzothiadiazole‐coupled indacenodithiophene, IDTBR) and are fabricated in air. P3HT:IDTBR solar cells light‐soaked over the course of 2000 h lose about 5% of power conversion efficiency (PCE), in stark contrast to [6,6]‐Phenyl C61 butyric acid methyl ester (PCBM)‐based solar cells whose PCE shows a burn‐in that extends over several hundreds of hours and levels off at a loss of ≈34%. Replacing PCBM with IDTBR prevents short‐circuit current losses due to fullerene dimerization and inhibits disorder‐induced open‐circuit voltage losses, indicating a very robust device operation that is insensitive to defect states. Small losses in fill factor over time are proposed to originate from polymer or interface defects. Finally, the combination of enhanced efficiency and stability in P3HT:IDTBR increases the lifetime energy yield by more than a factor of 10 when compared with the same type of devices using a fullerene‐based acceptor instead.  相似文献   

9.
A new 2D‐conjugated medium bandgap donor–acceptor copolymer, J81 , based on benzodifuran with trialkylsilyl thiophene side chains as donor unit and fluorobenzothiazole as acceptor, is synthesized and successfully used in nonfullerene polymer solar cells (PSCs) with low bandgap n‐type organic semiconductor (n‐OS) 3,9‐bis(2‐methylene‐ (3‐(1,1‐dicyanomethylene)‐indanone)‐5,5,11,11‐tetrakis(4‐ hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]‐ dithiophene (ITIC) and m ‐ITIC as acceptor. J81 possesses a lower‐lying highest occupied molecular orbital (HOMO) energy level of ?5.43 eV and medium bandgap of 1.93 eV with complementary absorption in the visible–near infrared region with the n‐OS acceptor. The PSCs based on J81 :ITIC and J81 :m ‐ITIC yield high power conversion efficiency of 10.60% and 11.05%, respectively, with high V oc of 0.95–0.96 V benefit from the lower‐lying HOMO energy level of J81 donor. The work indicates that J81 is another promising polymer donor for the nonfullerene PSCs.  相似文献   

10.
Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene‐based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene‐based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA‐based composites that enable devices without early performance loss, thus resembling so‐called burn‐in free devices.  相似文献   

11.
The role of Au@SiO2 core-shell nanoparticles on optical properties of perovskite solar cells has been explored using both the theoretical computations and the experiments. A quasi-static model is used to study the surface plasmon resonances (SPRs) of Au@SiO2 core-shell nanospheres. Au@SiO2 core-shell nanoparticles, with varying shell thickness and core radius, were assumed to be embedded in methylammonium lead triiodide (CH3NH3PbI3) perovskite active layer. Enhanced absorption in the active layer is obtained due to the near-field plasmonic effect of the embedded core-shell nanoparticles. Theoretical modelling shows that a shell thickness of 1 nm and core diameter of 20 nm provide absorption enhancement in the orange-red region of the electromagnetic spectrum. Experiments performed using ~20-nm-sized Au@SiO2 core-shell nanoparticles (with a shell thickness of ~1 nm) clearly demonstrate the enhanced absorption and the resulting enhancement in photocurrent due to the plasmonic effects. An efficiency enhancement of over 18 % is obtained for the best plasmonic perovskite solar cell containing Au@SiO2 nanoparticles in Au@SiO2-TiO2 weight ratio of ~1 %. Incident photon-to-current conversion efficiency (IPCE) data also showed enhancement in photocurrent for the plasmonic device. The quasi-static modelling approach provides a good correlation between theory and experiment.  相似文献   

12.
Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.  相似文献   

13.
We report a fundamentally new approach to enhance fluorescence in which surface adsorbed fluorophore‐tagged biomolecules are excited on a photonic crystal surface that functions as a narrow bandwidth and tunable mirror of an external cavity laser. This scheme leads to ~10× increase in the electromagnetic enhancement factor compared to ordinary photonic crystal enhanced fluorescence. In our experiments, the cavity automatically tunes its lasing wavelength to the resonance wavelength of the photonic crystal, ensuring optimal on‐resonance coupling even in the presence of variable device parameters and variations in the density of surface‐adsorbed capture molecules. We achieve ~105× improvement in the limit of detection of a fluorophore‐tagged protein compared to its detection on an unpatterned glass substrate. The enhanced fluorescence signal and easy optical alignment make cavity‐coupled photonic crystals a viable approach for further reducing detection limits of optically‐excited light emitters that are used in biological assays. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Compared to inorganic semiconductors and/or fullerene derivatives, nonfullerene n‐type organic semiconductors present some advantages, such as low‐temperature processing, flexibility, and molecule structure diversity, and have been widely used in perovskite solar cells (PSCs). In this research news article, the recent advances in nonfullerene n‐type organic semiconductors which function as electron‐transporting, interface‐modifying, additive, and light‐harvesting materials in PSCs are summarized. The remaining challenges and promising future directions of nonfullerene‐based PSCs are also discussed.  相似文献   

15.
Symmetry breaking provides a new material design strategy for nonfullerene small molecule acceptors (SMAs). The past 10 years have witnessed significant advances in asymmetric nonfullerene SMAs in organic solar cells (OSCs) with power conversion efficiency (PCE) increasing from ≈1% to ≈14%. In this review, the progress of asymmetric nonfullerene SMAs, including early reports of asymmetric nonfullerene SMAs, asymmetric PDI‐based nonfullerene SMAs, and asymmetric acceptor–donor–acceptor (A–D–A)‐type nonfullerene SMAs, is summarized. The structure–property relationships and the perspectives for future development of asymmetric nonfullerene SMAs are also discussed.  相似文献   

16.
For many years, it has been recognized that potential organic photovoltaic cells must be integrated into elements requiring high transparency. In most of such elements, sunlight is likely to be incident at large angles. Here it is demonstrated that light transmission can be largely decoupled from harvesting by optically tailoring an infrared shifted nonfullerene acceptor based organic cell architecture. A 9.67% power conversion efficiency at 50° incidence is achieved together with an average visual transmission above 50% at normal incidence. The deconstruction of a 1D nanophotonic structure is implemented to conclude that just two λ/4 thick layers are essential to reach, for a wide incidence angle range, a higher than 50% efficiency increase relative to the standard configuration reference. In an outdoor measurement of vertically positioned 50% visible transparent cells, it is demonstrated that 9.80% of sunlight energy can be converted into electricity during the course of 1 day.  相似文献   

17.
Unlike universally applicable fullerene derivatives, current nonfullerene electron acceptors are rarely effective with more than one donor polymer in bulk heterojunction (BHJ) solar cells. A novel class of nonfullerene electron acceptors, bis(naphthalene imide)‐3,6‐diphenyl‐trans‐anthrazolines (BNIDPAs), that is applicable and yields efficient photovoltaic devices with multiple donor polymers, including a thiazolothiazole–dithienosilole copolymer (PSEHTT) and benzodithiophene copolymers (PBDTT‐FTTE and PTB7) is reported. Photovoltaic devices composed of the BNIDPA‐butyloctyl (BO) acceptor with PSEHTT, PBDTT‐FTTE, and PTB7, respectively, have power conversion efficiencies of 3.0%–3.1% with high open‐circuit voltages of ≈1.0 V. In contrast, BHJ devices composed of BNIDPA‐DT acceptor with larger 2‐decyltetradecyl chains and the same donor polymers have substantially reduced bulk electron mobility and reduced photovoltaic efficiencies of 1.3%–1.7%, which highlight the critical role of the size of alkyl chains appended onto nonfullerene electron acceptors. The present results provide a rare example of nonfullerene electron acceptors that are capable of pairing with multiple donor polymers to achieve efficient BHJ solar cells.  相似文献   

18.
Three acceptor–donor–acceptor type nonfullerene acceptors (NFAs), namely, F–F, F–Cl, and F–Br, are designed and synthesized through a halogenation strategy on one successful nonfullerene acceptor FDICTF (F–H). The three molecules show red‐shifted absorptions, increased crystallinities, and higher charge mobilities compared with the F–H. After blending with donor polymer PBDB‐T, the F–F‐, F–Cl‐, and F–Br‐based devices exhibit power conversion efficiencies (PCEs) of 10.85%, 11.47%, and 12.05%, respectively, which are higher than that of F–H with PCE of 9.59%. These results indicate that manipulating the absorption range, crystallinity and mobilities of NFAs by introducing different halogen atoms is an effective way to achieve high photovoltaic performance, which will offer valuable insight for the designing of high‐efficiency organic solar cells.  相似文献   

19.
“Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high‐efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main‐chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide‐bandgap polymer donor analogues composed of benzo[1,2‐b:4,5‐b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4‐difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine‐ and ring‐substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.  相似文献   

20.
It is presented for the first time nontoxic CuGaS2/ZnS quantum dots (QDs) with free‐self‐reabsorption losses and large Stokes shift (>190 nm) synthesized on an industrially gram‐scale as an alternative for Cd‐based energy‐downshift (EDS)‐QD layers. The QDs exhibit a typical EDS that absorbs only UV light (<407 nm) and emits the whole range of visible light (400–800 nm) with a high photoluminescence‐quantum yield of ≈76%. The straightforward application of these EDS‐QDs on the front surface of a monocrystalline p‐type silicon solar cell significantly enhances the short‐circuit current density by ≈1.64 mA cm?2 (+4.20%); thereby, improving the power‐conversion‐efficiency by ≈4.11%. The significant improvement in the external quantum efficiency increases by ≈35.7% and that in the surface reflectance decreases by ≈14.1% in the UV region (300–450 nm) clearly manifest the photovoltaic enhancement. Such promising results together with the simple (one‐pot core/shell synthesis), cost‐effective (reduction in a bill of material–system by ≈2.62%), and scalable (2000 mL three‐neck flask, 11 g of QDs) preparation process might encourage the manufacturers of solar cells and other optoelectronic applications to apply these EDS‐QDs to different broader eco‐friendly applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号