首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this communication, light harvesting and photoelectrochemical (PEC) hydrogen generation beyond the visible region are realized by an anisotropic plasmonic metal/semiconductor hybrid photocatalyst with precise control of their topology and heterointerface. Controlling the intended configuration of the photocatalytic semiconductor to anisotropic Au nanorods' plasmonic hot spots, through a water phase cation exchange strategy, the site‐selective overgrowth of a CdSe shell evolving from a core/shell to a nanodumbbell is realized successfully. Using this strategy, tip‐preferred efficient photoinduced electron/hole separation and plasmon enhancement can be realized. Thus, the PEC hydrogen generation activity of the Au/CdSe nanodumbbell is 45.29 µmol cm?2 h?1 (nearly 4 times than the core/shell structure) beyond vis (λ > 700 nm) illumination and exhibits a high faradic efficiency of 96% and excellent stability with a constant photocurrent for 5 days. Using surface photovoltage microscopy, it is further demonstrated that the efficient plasmonic hot charge spatial separation, which hot electrons can inject into CdSe semiconductors, leads to excellent performance in the Au/CdSe nanodumbbell.  相似文献   

2.
Exploiting noble‐metal‐free cocatalysts is of huge interest for photocatalytic water splitting using solar energy. As an efficient cocatalyst in photocatalysis, MoS2 is shown promise as a low‐cost alternative to Pt for hydrogen evolution. Here we report a systematical study on controlled synthesis of MoS2 with layer number ranging from ≈1 to 112 and their activities for photocatalytic H2 evolution over commercial CdS. A drastic increase in photocatalytic H2 evolution is observed with decreasing MoS2 layer number. Particularly for the single‐layer (SL) MoS2, the SL‐MoS2/CdS sample reaches a high H2 generation rate of ≈2.01 × 10?3m h?1 in Na2S–Na2SO3 solutions and ≈2.59 × 10?3m h?1 in lactic acid solutions, corresponding to an apparent quantum efficiency of 30.2% and 38.4% at 420 nm, respectively. In addition to the more exposed edges and unsaturated active S atoms, valence band–XPS and Mott–Schottky plots analysis indicate that the SL MoS2 has the more negative conduction band energy level than the H+/H2 potential, facilitating the hydrogen reduction.  相似文献   

3.
Herein, this study successfully fabricates porous g‐C3N4‐based nanocomposites by decorating sheet‐like nanostructured MnOx and subsequently coupling Au‐modified nanocrystalline TiO2. It is clearly demonstrated that the as‐prepared amount‐optimized nanocomposite exhibits exceptional visible‐light photocatalytic activities for CO2 conversion to CH4 and for H2 evolution, respectively by ≈28‐time (140 µmol g?1 h?1) and ≈31‐time (313 µmol g?1 h?1) enhancement compared to the widely accepted outstanding g‐C3N4 prepared with urea as the raw material, along with the calculated quantum efficiencies of ≈4.92% and 2.78% at 420 nm wavelength. It is confirmed mainly based on the steady‐state surface photovoltage spectra, transient‐state surface photovoltage responses, fluorescence spectra related to the produced ?OH amount, and electrochemical reduction curves that the exceptional photoactivities are comprehensively attributed to the large surface area (85.5 m2 g?1) due to the porous structure, to the greatly enhanced charge separation and to the introduced catalytic functions to the carrier‐related redox reactions by decorating MnOx and coupling Au‐TiO2, respectively, to modulate holes and electrons. Moreover, it is suggested mainly based on the photocatalytic experiments of CO2 reduction with isotope 13CO2 and D2O that the produced ?CO2 and ?H as active radicals would be dominant to initiate the conversion of CO2 to CH4.  相似文献   

4.
Solar‐driven water splitting is in urgent need for sustainable energy research, for which accelerating oxygen evolution kinetics along with charge migration is the key issue. Herein, Mn3+ within π‐conjugated carbon nitride (C3N4) in form of Mn–N–C motifs is coordinated. The spin state (eg orbital filling) of Mn centers is regulated by controlling the bond strength of Mn–N. It is demonstrated that Mn serves as intrinsic oxygen evolution reaction (OER) site and the kinetics is dependent on its spin state with an optimized eg occupancy of ≈0.95. Specifically, the governing role of eg occupancy originates from the varied binding strength between Mn and OER intermediates. Benefiting from the rapid spin state‐mediated OER kinetics, as well as extended optical absorption (to 600 nm) and accelerated charge separation by intercalated metal‐to‐ligand state, Mn–C3N4 stoichiometrically splits pure water with H2 production rate up to 695.1 µmol g?1 h?1 under simulated sunlight irradiation (AM1.5), and achieves an apparent quantum efficiency of 4.0% at 420 nm, superior to most solid‐state based photocatalysts to date. This work for the first time correlates photocatalytic redox kinetics with the spin state of active sites, and suggests a nexus between photocatalysis and spin theory.  相似文献   

5.
In this work, plasmonic Au/SnO2/g‐C3N4 (Au/SO/CN) nanocomposites have been successfully synthesized and applied in the H2 evolution as photocatalysts, which exhibit superior photocatalytic activities and favorable stability without any cocatalyst under visible‐light irradiation. The amount‐optimized 2Au/6SO/CN nanocomposite capable of producing approximately 770 μmol g?1 h?1 H2 gas under λ > 400 nm light illumination far surpasses the H2 gas output of SO/CN (130 μmol g?1), Au/CN (112 μmol g?1 h?1), and CN (11 μmol g?1 h?1) as a contrast. In addition, the photocatalytic activity of 2Au/6SO/CN maintains unchanged for 5 runs in 5 h. The enhanced photoactivity for H2 evolution is attributed to the prominently promoted photogenerated charge separation via the excited electron transfer from plasmonic Au (≈520 nm) and CN (470 nm > λ > 400 nm) to SO, as indicated by the surface photovoltage spectra, photoelectrochemical IV curves, electrochemical impedance spectra, examination of formed hydroxyl radicals, and photocurrent action spectra. Moreover, the Kelvin probe test indicates that the newly aligned conduction band of SO in the fabricated 2Au/6SO/CN is indispensable to assist developing a proper energy platform for the photocatalytic H2 evolution. This work distinctly provides a feasible strategy to synthesize highly efficient plasmonic‐assisted CN‐based photocatalysts utilized for solar fuel production.  相似文献   

6.
Z‐scheme‐inspired tandem photoelectrochemical (PEC) cells have received attention as a sustainable platform for solar‐driven CO2 reduction. Here, continuously 3D‐structured, electrically conductive titanium nitride nanoshells (3D TiN) for biocatalytic CO2‐to‐formate conversion in a bias‐free tandem PEC system are reported. The 3D TiN exhibits a periodically porous network with high porosity (92.1%) and conductivity (6.72 × 104 S m?1), which allows for high enzyme loading and direct electron transfer (DET) to the immobilized enzyme. It is found that the W‐containing formate dehydrogenase from Clostridium ljungdahlii (ClFDH) on the 3D TiN nanoshell is electrically activated through DET for CO2 reduction. At a low overpotential of 40 mV, the 3D TiN‐ClFDH stably converts CO2 to formate at a rate of 0.34 µmol h?1 cm?2 and a faradaic efficiency (FE) of 93.5%. Compared to a flat TiN‐ClFDH, the 3D TiN‐ClFDH shows a 58 times higher formate production rate (1.74 µmol h?1 cm?2) at 240 mV of overpotential. Lastly, a bias‐free biocatalytic tandem PEC cell that converted CO2 to formate at an average rate of 0.78 µmol h?1 and an FE of 77.3% only using solar energy and water is successfully assembled.  相似文献   

7.
The effects of salinity, light intensity and sediment on Gracilaria tenuistipitata C.F. Chang & B.M. Xia on growth, pigments, agar production, and net photosynthesis rate were examined in the laboratory under varying conditions of salinity (0, 25 and 33 psu), light intensity (150, 400, 700 and 1000 µmol photons m?2 s?1) and sediment (0, 0.67 and 2.28 mg L?1). These conditions simulated field conditions, to gain some understanding of the best conditions for cultivation of G. tenuistipitata. The highest growth rate was at 25 psu, 700 µmol photons m?2 s?1 with no sediments, that provided a 6.7% increase in weight gain. The highest agar production (24.8 ± 3.0 %DW) was at 25 psu, 150–400 µmol photons m?2 s?1 and no sediment. The highest pigment contents were phycoerythrin (0.8 ± 0.5 mg g?1FW) and phycocyanin (0.34 ± 0.05 mg g?1 FW) produced in low light conditions, at 150 µmol photons m?2 s?1. The highest photosynthesis rate was 161.3 ± 32.7 mg O2 g?1 DW h?1 in 25 psu, 400 µmol photons m?2 s?1 without sediment in the short period of cultivation, (3 days) and 60.3 ± 6.7 mg O2 g?1 DW h?1 in 25 psu, 700 µmol photons m?2 s?1 without sediment in the long period of cultivation (20 days). The results indicated that salinity was the most crucial factor affecting G. tenuistipitata growth and production. This would help to promote the cultivation of Gracilaria cultivation back into the lagoon using these now determined baseline conditions. Extrapolation of the results from the laboratory study to field conditions indicated that it was possible to obtain two crops of Gracilaria a year in the lagoon, with good yields of agar, from mid‐January to the end of April (dry season), and from mid‐July to the end of September (first rainy season) when provided sediment was restricted.  相似文献   

8.
Grains and grain boundaries play key roles in determining halide perovskite‐based optoelectronic device performance. Halide perovskite monocrystalline solids with large grains, smaller grain boundaries, and uniform surface morphology improve charge transfer and collection, suppress recombination loss, and thus are highly favorable for developing efficient solar cells. To date, strategies of synthesizing high‐quality thin monocrystals (TMCs) for solar cell applications are still limited. Here, by combining the antisolvent vapor‐assisted crystallization and space‐confinement strategies, high‐quality millimeter sized TMCs of methylammonium lead iodide (MAPbI3) perovskites with controlled thickness from tens of nanometers to several micrometers have been fabricated. The solar cells based on these MAPbI3 TMCs show power conversion efficiency (PCE) of 20.1% which is significantly improved compared to their polycrystalline counterparts (PCE) of 17.3%. The MAPbI3 TMCs show large grain size, uniform surface morphology, high hole mobility (up to 142 cm2 V?1 s?1), as well as low trap (defect) densities. These properties suggest that TMCs can effectively suppress the radiative and nonradiative recombination loss, thus provide a promising way for maximizing the efficiency of perovskite solar cells.  相似文献   

9.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   

10.
The photocatalytic reduction of nitrogen (N2) with water (H2O) as the reducing agent holds great promise as a sustainable future technology for the synthesis of ammonia (NH3). Herein, the effect of oxygen vacancies and electron‐rich Cuδ+ on the performance of zinc‐aluminium layered double hydroxide (ZnAl‐LDH) nanosheet photocatalysts for N2 reduction to NH3 under UV–vis excitation is systematically explored. Results show that a 0.5%‐ZnAl‐LDH nanosheet photocatalyst (containing 0.5 mol% Cu by metal basis) affords a remarkable NH3 production rate of 110 µmol g?1 h?1 and excellent stability in pure water. The X‐ray absorption spectroscopy, electron paramagnetic resonance, and density functional theory calculations reveal that Cu addition imparts oxygen vacancies and coordinatively unsaturated Cuδ+ (δ < 2) with electron‐rich property in the ZnAl‐LDH nanosheets, both of which readily contribute to efficient separation and transfer of photogenerated electrons and holes and promote N2 adsorption, thereby both activating N2 and facilitating its multielectrons reduction to NH3.  相似文献   

11.
Here for the first time the design and optimization are presented of a three‐component Au/TiO2–gC3N4 nanocomposite photocatalyst able to efficiently produce H2 from water using very low amounts of sacrificial agents and under visible light irradiation. This enhanced photocatalytic behavior compared to Au/TiO2 and Au/gC3N4 materials is the result of synergetic effects due to high quality assembly and interface between the three components. This optimized nanoscale assembly characterized by simultaneous favorable nanoheterojunction formation between g‐C3N4 and TiO2 semiconductors, as well as AuNPs/gC3N4 and AuNPs/TiO2 junctions, leads to enhanced visible light harvesting, charge separation, and H2 production. This composite photocatalyst yields a high H2 production (350 µmol?1 h?1 gcatalyst?1) under visible light irradiation with minimal amounts of sacrificial agent (≤1 vol%), corresponding to activities much higher than reported so far under comparable conditions.  相似文献   

12.
The challenges of various biotic and abiotic stresses can imperil the growth of micropropagated plantlets either direct or indirectly. Hence, in this study, a mutual relationship was established between diazotrophs and micropropagated plantlets to enhance plant growth and development. Artificial symbiosis was created for different inoculums of Herbaspirillum seropedicae (Z78), namely sonicated cells, broth culture, and pellet cells with micropropagated oil palm plantlets Elaeis guineensis Jacq. Results reveal significant differences on root volume, total protein content, and Brix value for Z78 broth culture treatment compared with plantlets treated with 25% N. High nitrogenase enzyme activities (6.7?×?10?4?µmol?C2H4 g?1?h?1) and indole-3-acetic acid production (205.21?µmol (g?FW)?1) were also detected on roots of plantlets treated with Z78 broth culture. These beneficial traits reviewed that the application of diazotrophs (Z78) in associative manner for micropropagated plantlets hold vast potential for promoting plant growth and plant’s healthiness.  相似文献   

13.
2D metal organic frameworks (MOF) have received tremendous attention due to their organic–inorganic hybrid nature, large surface area, highly exposed active sites, and ultrathin thickness. However, the application of 2D MOF in light‐to‐hydrogen (H2) conversion is rarely reported. Here, a novel 2D MOF [Ni(phen)(oba)]n·0.5nH2O (phen = 1,10‐phenanthroline, oba = 4,4′‐oxybis(benzoate)) is for the first time employed as a general, high‐performance, and earth‐abundant platform to support CdS or Zn0.8Cd0.2S for achieving tremendously improved visible‐light‐induced H2‐production activity. Particularly, the CdS‐loaded 2D MOF exhibits an excellent H2‐production activity of 45 201 µmol h?1 g?1, even exceeding that of Pt‐loaded CdS by 185%. Advanced characterizations, e.g., synchrotron‐based X‐ray absorption near edge structure, and theoretical calculations disclose that the interactive nature between 2D MOF and CdS, combined with the high surface area, abundant reactive centers, and favorable band structure of 2D MOFs, synergistically contribute to this distinguished photocatalytic performance. The work not only demonstrates that the earth‐abundant 2D MOF can serve as a versatile and effective platform supporting metal sulfides to boost their photocatalytic H2‐production performance without noble‐metal co‐catalysts, but also paves avenues to the design and synthesis of 2D‐MOF‐based heterostructures for catalysis and electronics applications.  相似文献   

14.
Despite their excellent power conversion efficiency, MAPbI3 solar cells exhibit strong hysteresis that hinders reliable device operation. Herein it is shown that ionic motion is the dominant mechanism underlying hysteresis of MAPbI3 solar cells by studying the effects of electrical poling in different temperature ranges. Complete suppression of the hysteresis below 170 K is consistent with temperature activated diffusion of I? anions and/or the motion of the MA+ cations. Ionic motion has important effect on the overall efficiency of the MAPbI3 solar cells: the initial decrease of the power conversion efficiency while lowering the operating temperature is recovered and even enhanced up to 20% of its original value by applying an electrical poling. The open circuit voltage significantly increases and the current density fully recovers due to the reduction of the electron extraction barrier at the TiO2/MAPbI3 interface driven by the charge accumulation at the interface. Moreover, beside TiO2/MAPbI3 interfacial charge transfer, charge transport in TiO2 strongly affects the photovoltaic performance, as revealed by MAPbI3/ms‐TiO2 field effect transistors. These results establish the basis to develop effective strategies to mitigate operational instability of perovskites solar cells.  相似文献   

15.
Insufficient light absorption and low carrier separation/transfer efficiency constitute two key issues that hinder the development of efficient photocatalytic hydrogen production. Here, multishell ZnS/CoS2 bisulfide microspheres with gradient distribution of Zn based on the heat diffusion theory are designed. The Zn distribution can be adjusted by regulating the heating rate and manipulating the diffusion coefficients of the different elements conforming the multishell photocatalyst. Because of the unique structure, a gradient energy level is created from the core to the exterior of the multishell microspheres, which effectively facilitates the exciton separation and electron transfer. In addition, stronger light absorption and larger specific surface area have been achieved in the multishell ZnS/CoS2 photocatalysts. As a result, the multishell ZnS/CoS2 microspheres with gradient distribution of Zn exhibit a remarkable hydrogen production rate of 8001 µ mol g?1 h?1, which is 3.5 times higher than that of the normal multishell ZnS/CoS2 particles with well‐distributed Zn and 11.3 times higher than that of the mixed nonshell ZnS and CoS2 particles. This work demonstrates for the first time that controlling the diffusion rate of the different elements in the semiconductor is an effective route to simultaneously regulate morphology and structure to design highly efficient photocatalysts.  相似文献   

16.
Polymeric carbon nitride (CN) has emerged as a promising semiconductor for energy‐related applications. However, its utilization in photo‐electrochemical cells is still very limited owing to poor electron–hole separation efficiency, short electron diffusion length, and low absorption coefficient. Here the synthesis of a highly porous carbon nitride/reduced graphene oxide (CN‐rGO) film with good photo‐electrochemical properties is reported. The CN‐rGO film exhibits long electron diffusion length and high electrochemical active surface area, good charge separation, and enhanced light‐harvesting properties. The film displays a 20‐fold enhancement of photocurrent density over pristine CN, reaching up to 75 µA cm?2 at 1.23 V versus reversible hydrogen electrode (RHE) in an alkaline solution, as well as stability over a wide pH range. Photocurrent measurements with a hole scavenger reveal a photocurrent density of 660 µA cm?2 at 1.23 V versus RHE and a quantum efficiency of 60% at 400 nm, resulting in the production of 0.8 mol h?1 g?1 of hydrogen. The substantial photo‐electrochemical activity enhancement and hydrogen production together with the low price, high electrochemical surface area, long electron diffusion length, stability under harsh condition, and tunable photophysical properties of CN materials open many possibilities for their utilization in (photo)electrochemical and electronic devices.  相似文献   

17.
In the present study, we experimentally investigated the phosphate uptake kinetics of benthic microalga Nitzschia sp. isolated from Hiroshima Bay, Japan. The maximum uptake rate (ρmax) obtained by short‐term experiments was 6.84 pmol cell?1 h?1 for phosphate. The half‐saturation constant for uptake (KS) was 61.2 µmol cell?1 h?1. Both the ρmax and Ks of this species were extremely high, suggesting that Nitzschia sp. is adapted to benthic environments, where nutrient concentrations are much higher than in the water column. The specific maximum growth rate (µ'max) and minimum cell quota (Q0) for the P‐limited condition, obtained by a semi‐continuous growth experiment, were 0.48 day?1 and 0.045 pmol cell?1, respectively. It is concluded that Nitzschia sp. could be a ‘storage strategist’ species, meaning it adapts so as to minimize the influence of fluctuations in phosphate conditions resulting from the change in redox conditions of sediment due to bioturbation.  相似文献   

18.
Dark fermentative hydrogen gas production from cheese whey powder solution was realized at 55°C. Experiments were performed at different initial biomass concentrations varying between 0.48 and 2.86 g L?1 with a constant initial substrate concentration of 26 ± 2 g total sugar (TS) per liter. The highest cumulative hydrogen evolution (633 mL, 30°C), hydrogen yield (1.56 mol H2 mol?1 glucose), and H2 formation rate (3.45 mL h?1) were obtained with 1.92 g L?1 biomass concentration. The specific H2 production rate decreased with increasing biomasss concentration from the highest value (47.7 mL g?1 h?1) at 0.48 g L?1 biomass concentration. Total volatile fatty acid concentration varied beetween 10 and 14 g L?1 with the highest level of 14.2 g L?1 at biomass concentration of 0.48 g L?1 and initial TS content of 28.4 g L?1. The experimental data were correlated with the Gompertz equation and the constants were determined. The most suitable initial biomass to substrate ratio yielding the highest H2 yield and formation rate was 0.082 g biomass per gram of TS. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 931–936, 2012  相似文献   

19.
The aim of the work was to find the optimal photon irradiance for the growth of green cells of Haematococcus pluvialis and to study the interrelations between changes in photochemical parameters and pigment composition in cells exposed to photon irradiances between 50 and 600?µmol?m?2?s?1 and a light:dark cycle of 12:12?h. Productivity of cultures increased with irradiance. However, the rate of increase was higher in the range 50–200?µmol??2?s?1. The carotenoid content increased with increasing irradiance, while the chlorophyll content decreased. The maximum quantum yield of PSII (Fv/Fm) gradually declined from 0.76 at the lowest irradiance of 50?µmol??2?s?1 to 0.66 at 600?µmol??2?s?1. Photosynthetic activity showed a drop at the end of the light period, but recovered fully during the following dark phase. A steep increase in non-photochemical quenching was observed when cultures were grown at irradiances above 200?µmol??2?s?1. A sharp increase in the content of secondary carotenoids also occurred above 200?µmol?m?2?s?1. According to our results, with H. pluvialis green cells grown in a 5-cm light path device, 200?µmol??2?s?1 was optimal for growth, and represented a threshold above which important changes in both photochemical parameters and pigment composition occurred.  相似文献   

20.
The Ria Formosa is a meso-tidal coastal lagoon experiencing enhanced nutrient concentrations. Assessment of sediment–seawater interaction is essential if nutrient dynamics and the risk of eutrophication are to be fully understood. Pore water concentrations of dissolved inorganic and organic phosphorus, ammonium, nitrate and nitrite were determined in cores from six sites. Changes in nutrients concentrations were measured in intertidal pools on sand and mud between tides. Dissolved inorganic phosphorus (DIP) concentrations (~200 μmol l−1) and effluxes (123 ± 14 μmol m−2 h−1) were greater from sand than mud (37 ± 10 μmol m−2 h−1), possibly due to the binding of P with the <63 μm fraction. NH4+ effluxes were high outside the Anc?o Basin (821 ± 106 μmol m−2 h−1) and were associated with Enteromorpha sp. mats. The greatest NO3 efflux was from sediments near a salt marsh (170 ± 67 μmol m−2 h−1). These sediment fluxes of P were not sufficient to account for elevated P concentrations seen by other workers on the ebb tide from the Anc?o Basin. Intertidal pools were sinks for Dissolved Inorganic Nitrogen (DIN) and DIP over the 6 h exposure period. Thus, tidepools may be an important route of nutrients into sediments that enhances the effects of sediments on seawater nutrient concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号