首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rational construction of atomic‐scale interfaces in multiphase nanocomposites is an intriguing and challenging approach to developing advanced catalysts for both oxygen reduction (ORR) and evolution reactions (OER). Herein, a hybrid of interpenetrating metallic Co and spinel Co3O4 “Janus” nanoparticles stitched in porous graphitized shells (Co/Co3O4@PGS) is synthesized via ionic exchange and redox between Co2+ and 2D metal–organic‐framework nanosheets. This strategy is proven to effectively establish highways for the transfer of electrons and reactants within the hybrid through interfacial engineering. Specifically, the phase interpenetration of mixed Co species and encapsulating porous graphitized shells provides an optimal charge/mass transport environment. Furthermore, the defect‐rich interfaces act as atomic‐traps to achieve exceptional adsorption capability for oxygen reactants. Finally, robust coupling between Co and N through intimate covalent bonds prohibits the detachment of nanoparticles. As a result, Co/Co3O4@PGS outperforms state‐of‐the‐art noble‐metal catalysts with a positive half‐wave potential of 0.89 V for ORR and a low potential of 1.58 V at 10 mA cm?2 for OER. In a practical demonstration, ultrastable cyclability with a record lifetime of over 800 h at 10 mA cm?2 is achieved by Zn–air batteries with Co/Co3O4@PGS within the rechargeable air electrode.  相似文献   

2.
Two‐dimensional (2D) nanomaterials are widely recognized as an important class of functional materials possessing superior electrochemical reaction kinetics. Herein, an L‐aspartic acid (AA)‐modified graphene oxide (GO) templating strategy is developed to in situ yield ultrathin (i.e., ≈5 nm) cobalt carbonate hydroxide (Co2(OH)2CO3) nanosheets as advanced anode materials of lithium ion batteries. Notably, the covalent tethering of AA on the GO surface renders a high density of carboxyl groups that impart effective loading of Co‐containing precursors and subsequent growth into Co2(OH)2CO3 nanosheets bridging adjacent GO layers. The lasagna‐like Co2(OH)2CO3‐GO nanocomposites exhibit an ultrahigh lithium storage capacity of 1770 mAh g?1 after 500 cycles at 100 mA g?1. It is noteworthy that the cycled Co2(OH)2CO3 phase separates into homogeneously dispersed Co(OH)2 and CoCO3 phases with two different charge plateaus at ≈1.2 and 2.0 V, respectively, which effectively inhibit large‐scale homophase coarsening of Co, Li2CO3, and LiOH. The much shortened Li+/e? transfer distance enabled by individual ultrathin Co2(OH)2CO3 nanosheet together with robust layer‐by‐layer assembled nanostructure of Co2(OH)2CO3‐GO confers the superior electrochemical reactivity and mechanical stability. As such, the amino acid‐modified GO templating strategy may represent a simple yet robust means of crafting a variety of 2D nanostructured composites of interest for energy storage applications.  相似文献   

3.
A facile and binder‐free method is developed for the in situ and horizontal growth of ultrathin mesoporous Co3O4 layers on the surface of carbon fibers in the carbon cloth (ultrathin Co3O4/CC) as high‐performance air electrode for the flexible Zn–air battery. In particular, the ultrathin Co3O4 layers have a maximum contact area on the conductive support, facilitating the rapid electron transport and preventing the aggregation of ultrathin layers. The ultrathin feature of Co3O4 layers is characterized by the transmission electron microscopy, Raman spectra, and X‐ray absorption fine structure spectroscopy. Benefiting from the high utilization degree of active materials and rapid charge transport, the mass activity for oxygen reduction and evolution reactions of the ultrathin Co3O4/CC electrode is more than 10 times higher than that of the carbon cloth loaded with commercial Co3O4 nanoparticles. Compared to the commercial Co3O4/CC electrode, the flexible Zn–air battery using ultrathin Co3O4/CC electrode exhibits excellent rechargeable performance and high mechanical stability. Furthermore, the flexible Zn–air battery is integrated with a flexible display unit. The whole integrated device can operate without obvious performance degradation under serious deformation and even during the cutting process, which makes it highly promising for wearable and roll‐up optoelectronics.  相似文献   

4.
A weak surface modification is applied to Co/SiO2 catalyst by hydrothermal treatment at 180°C for 5 h. Aluminum is introduced to Co/SiO2 catalysts during the surface modification. The effects of surface modification on Co/SiO2 catalyst are studied by changing the operating sequences of surface modification and cobalt impregnation in the catalyst preparation. Surface modification before cobalt impregnation makes Co3O4 particle small and dispersed into the deep part of enlarged pore in SiO2, while surface modification after cobalt impregnation does not obviously change the particle size of Co3O4. The improved amplitude of catalytic activity is similar for the two kinds of catalysts, but they are benefited from different factors. The content of iso-hydrocarbons in the products is increased by the surface modifications.  相似文献   

5.
Co‐Co3O4/carbon nanotube/carbon foam (Co‐Co3O4/CNT/CF) nanocomposites were prepared by soaking melamine foam into a solution of Co(NO3)2·6H2O, followed by calcination in N2 and air in sequence. The obtained Co‐Co3O4/CNT/CF nanocomposites were characterized with scanning electron microscopy and cyclic voltammetry. It was found that Co3O4 nanoparticles were grown on the external of CF successfully, while CNTs were grown on the surfaces of CF in a large amount, which further improved the electrical conductivity of the. The prepared Co‐Co3O4/CNT/CF nanocomposites were then used to construct nonenzymatic sensor to detect glucose in alkaline solution. The sensor showed detection range from 1.2 μM to 2.29 mM with a detection limit of 0.4 μM (S/N =3) and a high sensitivity of 637.5 μA?1 cm?2. The developed sensor also showed an instant response, favorable reproducibility, and high selectivity. The results attest that Co‐Co3O4/CNT/CF composites have great potential in the development of nonenzymatic sensors for glucose.  相似文献   

6.
The ever‐increasing demand for clean and renewable power sources has sparked intensive research on water splitting to produce hydrogen, in which the exploration of electrocatalysts is the central issue. Herein, a new strategy, metal–organic framework template‐directed fabrication of hierarchically structured Co3O4@X (X = Co3O4, CoS, C, and CoP) electrocatalysts for efficient oxygen evolution reaction (OER) is developed, where Co3O4@X are derived from cobalt carbonatehydroxide@zeolitic‐imidazolate‐framework‐67 (CCH@ZIF‐67). Unique hierarchical structure and synergistic effect of resulting catalysts endow abundant exposed active sites, facile ion diffusion path, and improved conductivity, being favorable for improving catalytic activity of them. Consequently, these derivatives Co3O4@X reveal highly efficient electrocatalytic performance with long‐term durability for the OER, much superior to previously reported cobalt‐based catalysts as well as the Ir/C catalyst. Particularly, Co3O4@CoP exhibits the highest electrocatalytic capability with the lower overpotential of 238 mV at the current density of 10 mA cm?2. Furthermore, Co3O4@X can also efficiently catalyze other small molecules through electro‐oxidation reaction (e.g., glycerol, methanol, or ethanol). It is expected that the strategy presented here can be extended to the fabrication of other composite electrode materials with hierarchical structures for more efficient water splitting.  相似文献   

7.
The role of vacancy defects is demonstrated to be positive in various energy‐related processes. However, introducing vacancy defects into single‐crystalline nanostructures with given facets and studying their defect effect on electrocatalytic properties remains a great challenge. Here this study deliberately introduces oxygen defects into single‐crystalline ultrathin Co3O4 nanosheets with O‐terminated {111} facets by mild solvothermal reduction using ethylene glycol under alkaline condition. As‐prepared defect‐rich Co3O4 nanosheets show a low overpotential of 220 mV with a small Tafel slope of 49.1 mV dec?1 for the oxygen evolution reaction (OER), which is among the best Co‐based OER catalysts to date and even more active than the state‐of‐the‐art IrO2 catalyst. Such vacancy defects are formed by balancing with reducing environments under solvothermal conditions, but are surprisingly stable even after 1000 cycles of scanning under OER working conditions. Density functional theory plus U calculation attributes the enhanced performance to the oxygen vacancies and consequently exposed second‐layered Co metal sites, which leads to the lowered OER activation energy of 2.26 eV and improved electrical conductivity. This mild solvothermal reduction concept opens a new door for the understanding and future designing of advanced defect‐based electrocatalysts.  相似文献   

8.
The scalable synthesis of highly transparent and robust sub‐monolayers of Co3O4 nano‐islands, which efficiently catalyze water oxidation, is reported. Rapid aerosol deposition of Co3O4 nanoparticles and thermally induced self‐organization lead to an ultra‐fine nano‐island morphology with more than 94% light transmission at a wavelength of 500 nm. These transparent sub‐monolayers demonstrate a remarkable mass‐weighted water oxidation activity of 2070–2350 A gCo3O4?1 and per‐metal turnover frequency of 0.38–0.62 s?1 at an overpotential of 400 mV in 1 m NaOH aqueous solution. This mixed valent cobalt oxide structure exhibits excellent long‐term electrochemical and mechanical stability preserving the initial catalytic activity over more than 12 h of constant current electrolysis and 1000 consecutive voltammetric cycles. The potential of the Co3O4 nano‐islands for photoelectrochemical water splitting has been demonstrated by incorporation of co‐catalysts in GaN nanowire photoanodes. The Co3O4‐GaN photoanodes reveal significantly reduced onset overpotentials, improved photoresponse and photostability compared to the bare GaN ones. These findings provide a highly performing catalyst structure and a scalable synthesis method for the engineering of efficient photoanodes for integrated solar water‐splitting cells.  相似文献   

9.
Tuning the catalytic active sites plays a crucial role in developing low cost and highly durable oxygen electrode catalysts with precious metal‐competitive activity. In an attempt to engineer the active sites in Co3O4 spinel for oxygen electrocatalysis in alkaline electrolyte, herein, controllable synthesis of surface‐tailored Co3O4 nanocrystals including nanocube (NC), nanotruncated octahedron (NTO), and nanopolyhedron (NP) anchored on nitrogen‐doped reduced graphene oxide (N‐rGO), through a facile and template‐free hydrothermal strategy, is provided. The as‐synthesized Co3O4 NC, NTO, and NP nanostructures are predominantly enclosed by {001}, {001} + {111}, and {112} crystal planes, which expose different surface atomic configurations of Co2+ and Co3+ active sites. Electrochemical results indicate that the unusual {112} plane enclosed Co3O4 NP on rGO with abundant Co3+ sites exhibit superior bifunctional activity for oxygen reduction and evolution reactions, as well as enhanced metal–air battery performance in comparison with other counterparts. Experimental and theoretical simulation studies demonstrate that the surface atomic arrangement of Co2+/Co3+ active sites, especially the existence of octahedrally coordinated Co3+ sites, optimizes the adsorption, activation, and desorption features of oxygen species. This work paves the way to obtain highly active, durable, and cost‐effective electrocatalysts for practical clean energy devices through regulating the surface atomic configuration and catalytic active sites.  相似文献   

10.
Developing low‐cost and efficient electrocatalysts for the oxygen evolution reaction and oxygen reduction reaction is of critical significance to the practical application of some emerging energy storage and conversion devices (e.g., metal–air batteries, water electrolyzers, and fuel cells). Lithium cobalt oxide is a promising nonprecious metal‐based electrocatalyst for oxygen electrocatalysis; its activity, however, is still far from the requirements of practical applications. Here, a new LiCoO2‐based electrocatalyst with nanosheet morphology is developed by a combination of Mg doping and shear force‐assisted exfoliation strategies toward enhanced oxygen reduction and evolution reaction kinetics. It is demonstrated that the coupling effect of Mg doping and the exfoliation can effectively modulate the electronic structure of LiCoO2, in which Co3+ can be partially oxidized to Co4+ and the Co–O covalency can be enhanced, which is closely associated with the improvement of intrinsic activity. Meanwhile, the unique nanosheet morphology also helps to expose more active Co species. This work offers new insights into deploying the electronic structure engineering strategy for the development of efficient and durable catalysts for energy applications.  相似文献   

11.
Identifying cheap, yet effective, oxygen evolution catalysts is critical to the advancement of water splitting. Using liquid exfoliated Co(OH)2 nanosheets as a model system, a simple procedure is developed to maximize the activity of any oxygen evolution reaction nanocatalyst. First the nanosheet edges are confirmed as the active areas by analyzing the catalytic activity as a function of nanosheet size. This allows the authors to select the smallest nanosheets (length ≈50 nm) as the best performing catalysts. While the number of active sites per unit electrode area can be increased via the electrode thickness, this is found to be impossible beyond ≈10 µm due to mechanical instabilities. However, adding carbon nanotubes increases both toughness and conductivity significantly. These enhancements mean that composite electrodes consisting of small Co(OH)2 nanosheets and 10 wt% nanotubes can be made into freestanding films with thickness of up to 120 µm with no apparent electrical limitations. The presence of diffusion limitations results in an optimum electrode thickness of 70 µm, yielding a current density of 50 mA cm?2 at an overpotential of 235 mV, close to the state of the art in the field. Applying this procedure to a high‐performance catalyst such as NiFeOx should significantly surpass the state of the art.  相似文献   

12.
Hierarchically organized porous carbonized‐Co3O4 inverse opal nanostructures (C‐Co3O4 IO) are synthesized via complementary colloid and block copolymer self‐assembly, where the triblock copolymer Pluronic P123 acts as the template and the carbon source. These highly ordered porous inverse opal nanostructures with high surface area display synergistic properties of high energy density and promising bifunctional electrocatalytic activity toward both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It is found that the as‐made C‐Co3O4 IO/Ketjen Black (KB) composite exhibits remarkably enhanced electrochemical performance, such as increased specific capacity (increase from 3591 to 6959 mA h g?1), lower charge overpotential (by 284.4 mV), lower discharge overpotential (by 19.0 mV), and enhanced cyclability (about nine times higher than KB in charge cyclability) in Li–O2 battery. An overall agreement is found with both C‐Co3O4 IO/KB and Co3O4 IO/KB in ORR and OER half‐cell tests using a rotating disk electrode. This enhanced catalytic performance is attributed to the porous structure with highly dispersed carbon moiety intact with the host Co3O4 catalyst.  相似文献   

13.
The development of high‐efficiency bifunctional electrocatalyst for oxygen reduction and evolution reactions (ORR/OER) is critical for rechargeable metal–air batteries, a typical electrochemical energy storage and conversion technology. This work reports a general approach for the synthesis of Pd@PdO–Co3O4 nanocubes using the zeolite‐type metal–organic framework (MOF) as a template. The as‐synthesized materials exhibit a high electrocatalytic activity toward OER and ORR, which is comparable to those of commercial RuO2 and Pt/C electrocatalysts, while its cycle performance and stability are much higher than those of commercial RuO2 and Pt/C electrocatalysts. Various physicochemical characterizations and density functional theory calculations indicate that the favorable electrochemical performance of the Pd@PdO–Co3O4 nanocubes is mainly attributed to the synergistic effect between PdO and the robust hollow structure composed of interconnected crystalline Co3O4 nanocubes. This work establishes an efficient approach for the controlled design and synthesis of MOF‐templated hybrid nanomaterials, and provides a great potential for developing high‐performance electrocatalysts in energy storage and conversion.  相似文献   

14.
Unveiling the intrinsic effects of Ruddlesden‐Popper (RP) series An+1BnO3n+1 (A = La, B = Ni, Co, Mn, Cu, n = 1, 2 and 3) catalysts is essential in order to optimize the activity of oxygen reduction reaction (ORR) and evolution reaction (OER). Here, it is demonstrated that the oxygen vacancy is not the key point for RP to realize high ORR and OER activity at high temperature. Instead, interstitial O2? with high concentration and fast migration, and lattice oxygen with high activity are favorable for the high‐temperature catalytic activity. Aliovalent cation doping is an effective strategy to modify the catalytic activity. For the RP catalysts, low‐valence ion doping does not introduce oxygen vacancies, which suppresses the activity of lattice oxygen and decreases the interstitial O2? concentration; whereas high‐valence ion doping enhances the interstitial O2– concentration and the lattice oxygen activity. The evaluations of six RP series (La2NiO4, La2CoO4, La3Co2O7, La4Ni3O10, La2MnO4, and La2CuO4 based) and twenty samples as oxygen electrodes for solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) demonstrate that this finding is applicable to all the selected RP series.  相似文献   

15.
While electrochemical water splitting is one of the most promising methods to store light/electrical energy in chemical bonds, a key challenge remains in the realization of an efficient oxygen evolution reaction catalyst with large surface area, good electrical conductivity, high catalytic properties, and low fabrication cost. Here, a facile solution reduction method is demonstrated for mesoporous Co3O4 nanowires treated with NaBH4. The high‐surface‐area mesopore feature leads to efficient surface reduction in solution at room temperature, which allows for retention of the nanowire morphology and 1D charge transport behavior, while at the same time substantially increasing the oxygen vacancies on the nanowire surface. Compared to pristine Co3O4 nanowires, the reduced Co3O4 nanowires exhibit a much larger current of 13.1 mA cm‐2 at 1.65 V vs reversible hydrogen electrode (RHE) and a much lower onset potential of 1.52 V vs RHE. Electrochemical supercapacitors based on the reduced Co3O4 nanowires also show a much improved capacitance of 978 F g‐1 and reduced charge transfer resistance. Density‐functional theory calculations reveal that the existence of oxygen vacancies leads to the formation of new gap states in which the electrons previously associated with the Co‐O bonds tend to be delocalized, resulting in the much higher electrical conductivity and electrocatalytic activity.  相似文献   

16.
Rare earth doped materials with unique electronic ground state configurations are considered emerging alternatives to conventional Pt/C for the oxygen reduction reaction (ORR). Herein, gadolinium (Gd)‐induced valence structure engineering is, for the first, time investigated for enhanced oxygen electrocatalysis. The Gd2O3–Co heterostructure loaded on N‐doped graphene (Gd2O3–Co/NG) is constructed as the target catalyst via a facile sol–gel assisted strategy. This synthetic strategy allows Gd2O3–Co nanoparticles to distribute uniformly on an N‐graphene surface and form intimate Gd2O3/Co interface sites. Upon the introduction of Gd2O3, the ORR activity of Gd2O3–Co/NG is significantly increased compared with Co/NG, where the half‐wave potential (E1/2) of Gd2O3–Co/NG is 100 mV more positive than that of Co/NG and even close to commercial Pt/C. The density functional theory calculation and spectroscopic analysis demonstrate that, owing to intrinsic charge redistribution at the engineered interface of Gd2O3/Co, the coupled Gd2O3–Co can break the OOH*–OH* scaling relation and result in a good balance of OOH* and OH* binding on Gd2O3–Co surface. For practical application, a rechargeable Zn–air battery employing Gd2O3–Co/NG as an air–cathode achieves a large power density and excellent charge–discharge cycle stability.  相似文献   

17.
Earth‐abundant amorphous nanomaterials with rich structural defects are promising alternative catalysts to noble metals for an efficient electrochemical oxygen evolution reaction; however, their inferior electrical conductivity and poor morphological control during synthesis hamper the full realization of their potency in electrocatalysis. Herein, a rapid surface‐guided synthetic approach is proposed to introduce amorphous and mixed‐metal oxyhydroxide overlayers on ultrathin Ni‐doped MnO2 (Ni? MnO2) nanosheet arrays via a galvanic replacement mechanism. This method results in a monolithic 3D porous catalyst with a small overpotential of only 232 mV to achieve a current density of 10 mA cm?2 in 1 m KOH, which is much lower than the corresponding value of 307 mV for the Ni? MnO2 reference sample. Detailed structural and electrochemical characterization reveal that the unique Ni? MnO2 ultrathin nanosheet arrays do not only provide a large surface area to guide the formation of active amorphous catalyst layers but also ensure the effective charge transport owing to their high electron conductivity, collectively contributing to the greatly improved catalyst activity. It is envisioned that this highly operable surface‐guide synthetic strategy may open up new avenues for the design and fabrication of novel 3D nanoarchitectures integrated with functional amorphous materials for broadened ranges of applications.  相似文献   

18.
A facile one‐step hydrothermal co‐deposition method for growth of ultrathin Ni(OH)2‐MnO2 hybrid nanosheet arrays on three dimensional (3D) macroporous nickel foam is presented. Due to the highly hydrophilic and ultrathin nature of hybrid nanosheets, as well as the synergetic effects of Ni(OH)2 and MnO2, the as‐fabricated Ni(OH)2‐MnO2 hybrid electrode exhibits an ultrahigh specific capacitance of 2628 F g?1. Moreover, the asymmetric supercapacitor with the as‐obtained Ni(OH)2‐MnO2 hybrid film as the positive electrode and the reduced graphene oxide as the negative electrode has a high energy density (186 Wh kg?1 at 778 W kg?1), based on the total mass of active materials.  相似文献   

19.
Efficient and selective dehydrogenation of hydrazine borane (HB), a novel hydrogen storage material with very high hydrogen content (HB, 15.4 wt%), is a key challenge for a fuel‐cell‐based hydrogen economy. However, even using the noble metal catalysts for HB decomposition, the activities are still far from satisfying, to say nothing of non‐noble‐metal‐containing catalysts. In response, as a proof‐of‐concept experiment, herein, noble‐metal‐free NiFe–CeOx nanoparticles are successfully immobilized on an MIL‐101 support without surfactant by a simple liquid impregnation method. Unexpectedly, the resultant Ni0.5Fe0.5–CeOx/MIL‐101 catalyst shows good performance, including 100% H2 selectivity, 100% conversion, and record catalytic activity (351.3 h?1) for hydrogen generation at mild temperature, which is even better than most of the noble metal heterogeneous catalysts and might be attributed to the good dispersion and uniform particle size of the Ni0.5Fe0.5–CeOx nanoparticles due to steric restrictions effect of the MIL‐101 support. Additionally, extending MIL‐101 to some other important kinds of metal–organic framework (MOF) structures, the resultant NiFe–CeOx/MOF catalysts all show good catalytic activity toward HB decomposition, showing the universality of the MOF supported NiFe–CeOx catalysts.  相似文献   

20.
The hydrogen evolution reaction (HER) on a noble metal surface in alkaline media is more sluggish than that in acidic media due to the limited proton supply. To promote the reaction, it is necessary to transform the alkaline HER mechanism via a multisite catalyst, which has additional water dissociation sites to improve the proton supply to an optimal level. Here, this study reports a top‐down strategy to create a multisite HER catalyst on a nano‐Pd surface and how to further fine‐tune the areal ratio of the water dissociation component to the noble metal surface in core/shell‐structured nanoparticles (NPs). Starting with Pd/Fe3O4 core/shell NPs, electrochemical cycling is used to tune the coverage of iron (oxy)hydroxide on a Pd surface. The alkaline HER activity of the core/sell Pd/FeOx (OH)2?2x NPs exhibits a volcano‐shaped correlation with the surface Fe species coverage. This indicates an optimum coverage level where the rates of both the water dissociation step and the hydrogen formation step are balanced to achieve the highest efficiency. This multisite strategy assigns multiple reaction steps to different catalytic sites, and should also be extendable to other core/shell NPs to optimize their HER activity in alkaline media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号