首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this investigation is to study some freshwater snails as bioindicator for heavy metals Cd, Cu and Pb by determining the concentration of these metals in the field water samples and in whole snail tissues. Seven freshwater snails were used in the present study, some of which are considered medically important snails in Egypt, Biomphalaria alexandrina and Bulinus truncatus, the intermediate hosts for schistosomiasis and nontarget snails Bellamya unicolor, Cleopatra bulimoides, Helisoma duryi, Physa acuta and Theodoxus niloticus. Samples of snails were gathered from three Egyptian governorates: Damietta, Giza and Monufia.. The snails were arranged according to their accumulated concentration of the above‐mentioned microelements in descending order as follows: C. bulimoides > H. duryi > B. truncatus > B. alexandrina >P. acuta > B. unicolor > T. niloticus. It is concluded from the analysis of water and the investigated snails that these snails can accumulate Cu, Pb and Cd with high concentrations in their bodies, so they can be used as bioindicators for heavy metals.  相似文献   

2.
Hormesis is the term to describe a stimulatory effects associated with a low dose of a potentially toxic substance or stress. We had anecdotal evidence of hormetic effects in some of our previous experiments concerning the influence of heavy metals on aquatic snail growth and recruitment. We therefore repeated a version of an earlier experiment but this time we expanded our low-dose treatments and increased our sample size. We also explored if metals had a hormetic effect on algae periphyton. We raised snails in outdoor mini-ecosystems containing lead, zinc, and cadmium-contaminated soil from an Environmental Protection Agency Superfund site in the Silver Valley of northern Idaho. The snails came from two sites. One population (Physella columbiana) has evolved for 120 years in the presence of heavy metals and one (Lymnaea palustris) has not. We found that P. columbiana exhibited hormesis with snails exposed to small amounts of metals exhibiting more reproduction and growth than snails not exposed to metals. Naturally occurring Oscillatoria algae also exhibited a hormetic effect of heavy metals but L. palustris did not display hormesis. Large doses negatively impacted all three species. Overall the levels of cadmium, lead, and zinc measured in the tissues of the snails were inversely correlated to the number of snails recruited into the tub populations. Only in comparisons of the lowest metal treatment to the control treatment is a positive effect detected. Indirect effects on competing species of snails, periphyton, and also fishermen, may be less favorable.  相似文献   

3.
ABSTRACT Soil heavy metal contamination, a major threat due to industrialization, can be tackled by an efficient and economical process called bioremediation. Mushrooms are employed to accumulate heavy metals from soil due to their high metal accumulation potential and better adaptability. The bioaccumulation potential of Galerina vittiformis was already reported for individual metals. At natural conditions, since soil consists of more than one polluting metal, more focus has to be given to multimetal systems. In this study, multimetal accumulation potential was analyzed using central composite design, and the responses obtained were analyzed using response surface methodology. Heavy metals such as Cu(II), Cd(II), Cr(VI), Pb(II), and Zn(II) were subjected to biosorption at 10–250 mg/kg concentrations along with pH 5–8. The results showed that the preference of the organism for the five metals under study was in the order Pb(II) > Zn(II) > Cd(II) > Cu(II) > Cr(VI) at pH 6.5 under multimetal condition. The study also indicates that the metal interaction pattern in multimetal interaction is a property of their ionic radii. The response surface methodology clearly explains the effect of interaction of heavy metals on the accumulation potential of the organism using three-dimensional response plots. The present work suggests that the fungus Galerina vittiformis could be employed as a low-cost metal removal agent from heavy metal–polluted soil.  相似文献   

4.
Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg?1, respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.  相似文献   

5.
Excessive amounts of heavy metals adversely affect plant growth and development. Whereas some regions naturally contain high levels of heavy metals, anthropogenic release of heavy metals into the environment continuously increases soil contamination. Preliminary studies have shown that Chenopodium botrys can grow in some heavy metal contaminated soils and is a high accumulator plant species for Cu and moderately accumulator plant species for Fe, Mn, and Zn, thus, was considered as an important species in this study. Based on that, in this species, we studied the individual effects of heavy metals on the formation, development, and structure of anther and pollen. To achieve this purpose, surrounding area of Hame-Kasi iron and copper mine (Hamedan, Iran) was chosen as a polluted area where the amount of some heavy metals was several times higher than the natural soils. Flowers and young pods were removed from non-polluted and polluted plants, fixed in FAA 70, and subjected to developmental studies. Analysis of anther development in plants from contaminated sites showed general similarities in the pattern of pollen formation with those from non-polluted ones, but also deviation from typical form of major stages of anther and pollen development was seen in plants from polluted ones. Stabilizing of tapetum layer, increasing in tapetum layer numbers, thickening callose wall in the microspore mother cell stage, changing the anther shape, and decreasing the size of anther were the effects of heavy metals. Reduction of pollen number was also seen in the plants collected from polluted area.  相似文献   

6.
Heavy metal contamination of land and freshwater resources is a serious concern worldwide. It adversely affects the health of animals, plants and humans. Therefore, remediation of toxic heavy metals must be highly considered. Unlike other techniques, phytoremediation is a holistic technology and can be used in large scale for soil remediation as it is costless, novel, environmentally-safe and solar-driven technology. Utilization of non-edible plants in phytoremediation is an ingenious technique as they are used to generate new bioenergy resources along with the remediation of contaminated soils. Some nonfood bioenergy crops such as Salix species, Miscanthus species, Populus species, Eucalyptus species, and Ricinus communis exhibit high capability to accumulate various metals and to grow in contaminated lands. However, there are still sustainable challenges facing coupling phytoremediation with bioenergy production from polluted lands. Therefore, there has long been a need for developing different strategies to resolve such challenges. In this article review, we will discuss the phytoremediation mechanism, the technique of phytoremediation coupling with bioenergy production, sustainable problems facing linking phytoremediation with energy production as well as possible strategies to enhance the efficiency of bioenergy plants for soil decontamination by improving their characteristics such as metal uptake, transport, accumulation, and tolerance.  相似文献   

7.
Phytoextraction capacity of trees growing on a metal contaminated soil   总被引:8,自引:1,他引:7  
Phytoremediation is an innovative biological technique to reclaim land contaminated by heavy metals or organic pollutants. In the present work, we studied the ability of five woody species to extract heavy metal (copper, zinc or cadmium) from a polluted soil to their above-ground tissues. Metal content in leaves and twigs was determined. Salix and Betula transferred zinc and cadmium to leaves and twigs, but Alnus, Fraxinus and Sorbus excluded them from their above-ground tissues. None of the species considered transferred copper to the shoots.  相似文献   

8.
对湖南省石门、冷水江、浏阳3个矿区土壤和苎麻体内重金属进行测定和分析。结果表明,石门雄黄矿区As污染严重,伴随Cd、Sb污染和轻微的Pb污染;冷水江锑矿区Sb为主要污染物,伴随Cd、As、Pb污染;浏阳七宝山矿区Cd污染严重,伴随Pb、Zn、Cu污染。15个采样点的苎麻群落生长繁茂,Sb和As在苎麻不同部位间的分布次序为叶片中含量最高,根茎中次之,其余重金属在部位间分布没有规律。所有采样点苎麻地上部的Cd含量比一般植物的Cd含量大2-10倍,As含量大9.9-147.5倍,Sb含量大1.2-338.4倍;Cd富集系数和转移系数最高值为2.07和3;As富集系数和转移系数最高值为1.04和12.42,Sb富集系数和转移系数最高值为1.91和9.04。3个矿区苎麻地上部生物量分别为3.47,14.3,15.7 t/hm2,地上部Cd、Pb、As、Sb、Zn和Cu的累积量分别高达0.11、1.17、0.72、7.97、6.71,1.69 kg/hm2,兼具一定的经济价值和观赏性,适合用作矿区重金属污染土壤的环境治理和修复。  相似文献   

9.
On sols highly polluted by trace metallic elements the majority of plant species are excluders, limiting the entry and the root to shoot translocation of trace metals. However a rare class of plants called hyperaccumulators possess remarkable adaptation because those plants combine extremely high tolerance degrees and foliar accumulation of trace elements. Hyperaccumulators have recently gained considerable interest, because of their potential use in phytoremediation, phytomining and biofortification. On a more fundamental point of view hyperaccumulators of trace metals are case studies to understand metal homeostasis and detoxification mechanisms. Hyperaccumulation of trace metals usually depends on the enhancement of at least four processes, which are the absorption from the soil, the loading in the xylem in the roots and the unloading from the xylem in the leaves and the detoxification in the shoot. Cadmium is one of the most toxic trace metallic elements for living organisms and its accumulation in the environment is recognized as a worldwide concern. To date, only nine species have been recognized as Cd hyperaccumulators that is to say able to tolerate and accumulate more than 0.01 % Cd in shoot dry biomass. Among these species, four belong to the Brassicaceae family with Arabidopsis halleri and Noccaea caerulescens being considered as models. An update of our knowledge on the evolution of hyperaccumulators will be presented here.  相似文献   

10.
Terrestrial micromolluscs (snails with an adult maximum shell dimension <5 mm) constitute a considerable proportion of the land snail fauna of the Pacific. However, micromolluscs are often underestimated in biological surveys because of size bias. It has been argued that visual searches are preferable on Pacific islands because: (1) size biases are limited based on the understanding that most native Pacific island land snails are very small, and (2) amount of labor is less than other methods such as soil surveys and adequate for inventory purposes (though not for abundance assessments). To test whether visual surveys and soil surveys were accurately recording all taxa, land snail inventories were completed in three forest reserves (5 sampling sites in each) on the island of Oahu, Hawaii. Visual surveys involved 30-min visual search in a 10 m2 site; soil surveys involved sieving leaf litter and topsoil from four 0.3 m2 quadrats and extracting snails with the aid of a microscope. The data indicate a size and microhabitat bias associated with both techniques. Visual surveys consistently collected large arboreal and litter-dwelling species but missed a significant portion of micromolluscs, while soil surveys collected micromolluscs but missed larger snails. Because of such biases, employing both methods is critical for collecting all taxa at a survey location. As such, we recommend that future land snail surveys on Pacific Islands incorporate both survey techniques. Obtaining a complete inventory is critical if we are to understand species distributions and patterns of diversity and make well-informed conservation recommendations.  相似文献   

11.

Heavy metal pollution is one of most toxic pollutions and cause serious threat to organisms as well as the environment. The tremendous increase in industrialization and other anthropogenic activities magnify the rate of heavy metal pollution. The present study reveals the heavy metal pollution assessment in Kadalundi Vallikunnu Community Reserve (KVCR), a scheduled community reserve of Kerala, India. The results from the study indicate that the heavy metal pollution index of KVCR was less because of the mangrove cover in this region. KVCR is endowed with different mangroves and it plays a significant role in controlling the heavy metal pollution and water quality. The higher Importance Value Index and Relative Importance Value Index was shown in the case of Avicennia officinalis, followed by Acanthus ilicifolius and the lowest values of these indices were observed in the case of Sonneratia alba. The less accumulation of heavy metals in the soil sediments was due to the potential of mangrove species for effective absorption of toxic metals from the soil sediments. Mangrove vegetation in the wetlands is potent phytoremediators and can play a significant role in phytoremediation of wetlands. The high BCF value of A. ilicifolius indicates its suitability for heavy metal remediation in wetlands. Eco restoration of heavy metal polluted wetlands using mangroves is a promising and sustainable solution for heavy metal pollution in such ecologically fragile areas.

  相似文献   

12.
It was assumed in the study that heavy metals occurring in soils and the air accumulate in grasses constituting the main species used in the turfing of soil in road verges and embankments along traffic routes and in other parts of urbanized areas. The aim of the present study was to assess the bioaccumulation of Cu, Pb, and Zn in three selected lawn cultivars of five grass species and in the soil of the roadside green belt in terms of soil properties and heavy metal uptake by plants in the aspect of determining their usefulness in protecting the soils from contamination caused by motor vehicle traffic. Samples of the plant material and soil were collected for chemical analysis in the autumn of 2018 (October) on the embankment along National Road No. 17 between Piaski and ?opiennik (Poland), where 15 lawn cultivars of five grass species had been sown 2 years earlier. During the study, Cu, Pb, and Zn levels were determined in the aboveground biomass of the grasses under study and in the soil beneath these grasses (the 0–20 cm layer). All the grass species under study can thus be regarded as accumulators of Cu and Zn because the levels of these elements in the aboveground biomass of the grasses were higher than in the soil beneath these grasses. The present study demonstrates that the grasses can accumulate a large amount of Cu and Zn from soils and transfer it to the aboveground biomass. Tested species of grasses are not a higher bioaccumulators for Pb. The best grass species for the sowing of roadsides embankment, with the highest BCF values for the studied metals, is Lolium perenne (Taya variety).  相似文献   

13.
Metallothioneins (MTs) are low-molecular-weight, cysteine-rich metal-binding proteins found in a wide variety of organisms including bacteria, fungi and all eukaryotic plant and animal species. MTs bind essential and non-essential heavy metals. In mammalian cells MT genes are highly inducible by many heavy metals including Zn, Cd, Hg, and Cu. Aquatic systems are contaminated by different pollutants, including metals, as a result of man's activities. Bivalve molluscs are known to accumulate high concentrations of heavy metals in their tissue and are widely used as bioindicators for pollution in marine and freshwater environments, with MTs frequently used as a valuable marker of metal contamination. We here describe the MT isoform gene expression patterns of marine and freshwater molluscs and fish species after Cd or Zn contamination. Contamination was carried out at a river site polluted by a zinc ore extraction plant or in the laboratory at low, environmentally relevant metal concentrations. A comparison for each species based on the accumulated MT protein levels often shows discrepancies between gene expression and protein level. In addition, several differences observed in the pattern of MT gene expression between mollusc and mammalian species enable us to discuss and challenge a model for the induction of MT gene expression.  相似文献   

14.
Vascular plants in salt marshes strongly influence processes of heavy metal accumulation. Many studies have focused on this issue; however, there is a lack of information regarding the effects of plants on the distribution of certain poorly studied metals, such as Co, Cr, and Ni. The aim of this study was to comparatively evaluate the capability of Spartina densiflora Brongn. and Spartina maritima (Curtis) Fernald, to accumulate Co, Cr, and Ni and influence the sediment composition around their roots, investigating whether the observed behavior can change with different levels of sediment pollution. Concentrations of Co, Cr, and Ni were determined in tissues of S. densiflora and S. maritima and in sediments and rhizosediments from the Odiel and Tinto marshes (SW Spain), one of the estuaries most polluted by heavy metals in the world. Concentrations of Co, Cr, and Ni in the belowground tissues of both Spartina species were higher than those in aboveground tissues in all sites sampled. Both species showed potential for phytostabilization of Co, possibly by promoting the formation of high amounts of Fe-oxides in the rhizosphere, which can act to retain the metal within the sediment around the roots. In addition, both Spartina species were found to accumulate Co in their roots, thereby avoiding the translocation of this metal to photosynthetic tissues. At the Tinto marsh, there were no differences recorded in metal levels between sediments and rhizosediments of both species, a fact that could be explained by the extremely high background levels of metals at this site, which may impair the ability of the plant to alter the chemistry of the sediment in contact with the roots. The potential for the immobilization of a large amount of Co in the soil, exhibited by S. densiflora and S. maritima, indicates that both species could be highly useful in the phytostabilization of Co contaminated environments.  相似文献   

15.
上海地区绿化树种重金属污染防护特性的研究   总被引:14,自引:2,他引:14  
通过测定土壤样品的重金属含量,调查了上海七宝镇污染水系两侧与上海宝钢集团厂区的重金属污染状况。结果表明,在污染水系两侧重金属含量较对照稍高,而上海宝钢厂区各样点土壤重金属含量明显高于对照,存在较严重的污染.同时在这两处重金属污染地带观察记录了绿化树种的生长状况,采集植物样品以ICP仪进行树木样品的重金属含量分析,综合两方面数据对近20种常见绿化树种的重金属污染的防护特性进行了比较研究.结果表明,法国冬青、紫薇、木芙蓉、女贞和龙柏等植物种类富集重金属能力较强,且生长状况较为良好,最适于作为重金属污染厂区的生态防护绿化的主要树种;而蚊母、夹竹桃和石楠等植物种类虽然富集重金属能力较低,但有较强的耐性,能良好生长。也适于作为污染区绿化美化树种。  相似文献   

16.
A microcosm experiment was performed to investigate temporal (up to 16 weeks) and spatial variation in metal transfer in a soil–food (nettle)–snail (Cepaea nemoralis) food chain and biomarker responses in the digestive gland of the same snails. Adult snails were sampled from an uncontaminated site and transferred to five sites located 0.5, 2.5, 3, 5, and 10 km from a historically polluted point source. All sites were park areas where grasslands interfered with patches of deciduous forest. Soil physicochemical properties (pH, clay%, OC%) significantly explained the uptake of metals by nettle. Concentrations of metals in the digestive gland (DG) of snails were significantly related to those in nettle, but rarely to soil physicochemical properties. In general metal concentrations in the DG fluctuated while As, Ni, Pb and Zn showed a site dependent increase with time. Despite the long term exposure, biomarker concentrations (lipid, glycogen, proteins, glutathione-S-transferases), and shell morphology, were not related to DG metal concentrations. Our investigation emphasizes the need for controlled long-term studies on the transfer and effects of metals in food chains since short term studies might only show temporary physiological changes due to experimental acclimation.  相似文献   

17.
The effect of heavy metal deposition onto soil from a copper smelter on lipid peroxidation and antioxidant enzyme activity in the fine roots of two poplars (Populus nigra L. and Populus deltoides Bartr. ex Marsch) was analyzed. The subjects were mature trees growing in real environments. In both analyzed species, heavy metals stimulated the overproduction of free radicals in fine roots (measured as malondialdehyde level), which was directly proportional to advancing senescence. In young fine roots, heavy metals caused a decrease in guaiacol peroxidase activity and presumably disturbed the lignification process. Catalase was highly sensitive to the presence of heavy metals in the soil. In contrast, ascorbate peroxidase and glutathione reductase activities were unaffected by heavy metals. In the case of superoxide dismutase, a clear increase in enzyme activity was observed only in P. nigra under drought conditions, whereas it was inhibited in polluted stands.  相似文献   

18.
土壤重金属生物毒性研究进展   总被引:22,自引:2,他引:22  
孙晋伟    黄益宗    石孟春    崔岩山  李小方  招礼军  杜心  高卫国 《生态学报》2008,28(6):2861-2861~2869
世界范围内土壤重金属污染不断加重,由污染所带来的问题以及如何治理污染已经受到人们越来越多的关注.土壤重金属将对土壤生物产生影响,而土壤生物在重金属的胁迫下也会产生不同的响应.综述了国内外近年来土壤重金属生物毒性的研究进展,介绍了土壤重金属污染对陆地生态系统中植物、动物和微生物生长的影响;土壤重金属生物毒性的影响因素;土壤重金属生物毒性的研究方法;土壤重金属生物毒性的预测模型,最后提出了问题和展望.  相似文献   

19.
Heavy metal phytoextraction is a soil remediation technique which implies the optimal use of plants to remove contamination from soil. Plants must thus be tolerant to heavy metals, adapted to soil and climate characteristics and able to take up large amounts of heavy metals. Their roots must also fit the spatial distribution of pollution. Their different root systems allow plants to adapt to their environment and be more or less efficient in element uptake. To assess the impact of the root system on phytoextraction efficiency in the field, we have studied the uptake and root systems (root length and root size) of various high biomass plants (Brassica juncea, Nicotiana tabacum, Zea mays and Salix viminalis) and one hyperaccumulator (Thlaspi caerulescens) grown in a Zn, Cu and Cd contaminated soil and compared them with total heavy metal distribution in the soil. Changes from year to year have been studied for an annual (Zea mays) and a perennial plant (Salix viminalis) to assess the impact of the climate on root systems and the evolution of efficiency with time and growth. In spite of a small biomass, T. caerulescens was the most efficient plant for Cd and Zn removal because of very high concentrations in the shoots. The second most efficient were plants combining high metal concentrations and high biomass (willows for Cd and Zn and tobacco for Cu and Cd). A large cumulative root density/aboveground biomass ratio (LA/B), together with a relative larger proportion of fine roots compared to other plants seemed to be additional favourable characteristics for increased heavy metal uptake by T. caerulescens. In general, for all plants correlations were found between L A/B and heavy metal concentrations in shoots (r=0.758***, r=0.594***, r=0.798*** (P<0.001) for Cd, Cu and Zn concentrations resp.). Differences between years were significant because of variations in climatic conditions for annual plants or because of growth for perennial plants. The plants exhibited also different root distributions along the soil profile: T. caerulescens had a shallow root system and was thus best suited for shallow contamination (0.2 m) whereas maize and willows were the most efficient in colonising the soil at depth and thus more applicable for deep contamination (0.7 m). In the field situation, no plant was able to fit the contamination properly due to heterogeneity in soil contamination. This points out to the importance and the difficulty of choosing plant species according to depth and heterogeneity of localisation of the pollution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号