首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a long time lithium (Li) metal has been considered one of the most promising anodes for next‐generation rechargeable batteries. Despite decades of concentrated research, its practical application is still hindered by dendritic Li deposition and infinite volume change of Li metal anodes. Here, atomically dispersed metals doped graphene is synthesized to regulate Li metal nucleation and guide Li metal deposition. The single‐atom (SA) metals, supported on the nitrogen‐doped graphene can not only increase the Li adsorption energy of the localized area around the metal atomic sites with a moderate adsorption energy gradient but also improve the atomic structural stability of the overall materials by constructing a coordination mode of M‐Nx‐C (M, N, and C denoted as metal, nitrogen, and carbon atoms, respectively). As a result, the as‐obtained electrode exhibits an ultralow voltage hysteresis of 19 mV, a high average Coulombic efficiency of 98.45% over 250 cycles, and a stable Li plating/stripping performance even at a high current density of 4.0 mA cm?2. This work demonstrates the application of SA metal doping in the rational design of Li metal anodes and provides a new concept for further development of Li metal batteries.  相似文献   

2.
Lithium metal is the most promising anode material for next‐generation batteries, owing to its high theoretical specific capacity and low electrochemical potential. However, the practical application of lithium metal batteries (LMBs) has been plagued by the issues of uncontrollable lithium deposition. The multifunctional nanostructured anode can modulate the initial nucleation process of lithium before the extension of dendrites. By combing the theoretical design and experimental validation, a novel nucleation strategy is developed by introducing sulfur (S) to graphene. Through first‐principles simulations, it is found that S atom doping can improve the Li adsorption ability on a large area around the S doping positions. Consequently, S‐doped graphene with five lithiophilic sites rather than a single atomic site can serve as the pristine nucleation area, reducing the uneven Li deposition and improving the electrochemical performance. Modifying Li metal anodes by S‐doped graphene enables an ultralow overpotential of 5.5 mV, a high average Coulombic efficiency of 99% over more than 180 cycles at a current density of 0.5 mA cm?2 for 1.0 mAh cm?2, and a high areal capacity of 3 mAh cm?2. This work sheds new light on the rational design of nucleation area materials for dendrite‐free LMB.  相似文献   

3.
Uncontrolled dendrites resulting from nonuniform lithium (Li) nucleation/growth and Li volume expansion during charging cause serious safety problems for Li anode‐based batteries. Here the coating of nickel foam with graphitic carbon nitride (g‐C3N4) to have a 3D current collector (g‐C3N4@Ni foam) for dendrite‐free Li metal anodes is reported. The lithiophilic g‐C3N4 coupled with the 3D framework is demonstrated to be highly effective for promoting the uniform deposition of Li and suppressing the formation of dendrites. Both density functional theory calculations and experimental studies indicate the formation of a micro‐electric field resulting from the tri‐s‐triazine units of g‐C3N4, which induces numerous Li nuclei during the initial nucleation stage, effectively guiding the following Li growth on the 3D Ni foam to be well distributed. Furthermore, the 3D porous framework is favorable for absorbing any volume change and stabilizing the solid–electrolyte interphase layer during repeated Li plating/stripping. As such, a Li metal anode based on the g‐C3N4@Ni foam has a remarkable electrochemical performance with a high Coulombic efficiency (98% retention after 300 cycles), an ultralong lifespan up to 900 h, as well as a low overpotential (<15 mV at 1.0 mA cm?2) at a Li deposition of 9.0 mA h cm?2.  相似文献   

4.
Mixed transition‐metal oxides (MTMOs), including stannates, ferrites, cobaltates, and nickelates, have attracted increased attention in the application of high performance lithium‐ion batteries. Compared with traditional metal oxides, MTMOs exhibit enormous potential as electrode materials in lithium‐ion batteries originating from higher reversible capacity, better structural stability, and high electronic conductivity. Recent advancements in the rational design of novel MTMO micro/nanostructures for lithium‐ion battery anodes are summarized and their energy storage mechanism is compared to transition‐metal oxide anodes. In particular, the significant effects of the MTMO morphology, micro/nanostructure, and crystallinity on battery performance are highlighted. Furthermore, the future trends and prospects, as well as potential problems, are presented to further develop advanced MTMO anodes for more promising and large‐scale commercial applications of lithium‐ion batteries.  相似文献   

5.
The application of lithium (Li) metal anodes in Li metal batteries has been hindered by growth of Li dendrites, which lead to short cycling life. Here a Li‐ion‐affinity leaky film as a protection layer is reported to promote a dendrite‐free Li metal anode. The leaky film induces electrokinetic phenomena to enhance Li‐ion transport, leading to a reduced Li‐ion concentration polarization and homogeneous Li‐ion distribution. As a result, the dendrite‐free Li metal anode during Li plating/stripping is demonstrated even at an extremely high deposition capacity (6 mAh cm?2) and current density (40 mA cm?2) with improved Coulombic efficiencies. A full cell battery with the leaky‐film protected Li metal as the anode and high‐areal‐capacity LiNi0.8Co0.1Mn0.1O2 (NCM‐811) (≈4.2 mAh cm?2) or LiFePO4 (≈3.8 mAh cm?2) as the cathode shows improved cycling stability and capacity retention, even at lean electrolyte conditions.  相似文献   

6.
Li metal batteries are considered a promising candidate for next‐generation rechargeable batteries. However, the practical application of Li metal batteries has been hindered by many challenges, especially the cycling stability of Li anodes due to their uncontrollable dendrite growth, volume fluctuation, and side reactions. These problems are more severe under high‐rate charge/discharge process. Therefore, the realization of stable cycling of Li anodes under high current density is crucial for the practical application of Li metal batteries. In this Progress Report, the authors focus on the stability of metallic Li through interphase design or microstructure construction. The advantages and drawbacks of the first‐generation 3D scaffolds are summarized, and a review of recent research progress in this area is generated. As high‐rate cycling of metallic Li is a complex dynamic problem, a scaffold with high mixed ionic and electronic conductivity may be a promising approach. The different design strategies of mixed ion and electron‐conductive scaffolds working with liquid and solid electrolytes are discussed, along with their technical challenges. Further directions of mixed ion and electron‐conductive scaffolds are also proposed.  相似文献   

7.
Interfacial chemistry between lithium metal anodes and electrolytes plays a vital role in regulating the Li plating/stripping behavior and improving the cycling performance of Li metal batteries. Constructing a stable solid electrolyte interphase (SEI) on Li metal anodes is now understood to be a requirement for progress in achieving feasible Li‐metal batteries. Recently, the application of novel analytical tools has led to a clearer understanding of composition and the fine structure of the SEI. This further promoted the development of interface engineering for stable Li metal anodes. In this review, the SEI formation mechanism, conceptual models, and the nature of the SEI are briefly summarized. Recent progress in probing the atomic structure of the SEI and elucidating the fundamental effect of interfacial stability on battery performance are emphasized. Multiple factors including current density, mechanical strength, operating temperature, and structure/composition homogeneity that affect the interfacial properties are comprehensively discussed. Moreover, strategies for designing stable Li‐metal/electrolyte interfaces are also reviewed. Finally, new insights and future directions associated with Li‐metal anode interfaces are proposed to inspire more revolutionary solutions toward commercialization of Li metal batteries.  相似文献   

8.
Ca‐ion batteries (CIBs) show promise to achieve the high energy density required by emerging applications like electric vehicles because of their potentially improved capacities and high operating voltages. The development of CIBs is hindered by the failure of traditional graphite and calcium metal anodes due to the intercalation difficulty and the lack of efficient electrolytes. Recently, a high voltage (4.45 V) CIB cell using Sn as the anode has been reported to achieve a remarkable cyclability (>300 cycles). The calciation of Sn is observed to end at Ca7Sn6, which is surprising, since higher Ca‐content compounds are known (e.g., Ca2Sn). Here, the Sn electrochemical calciation reaction process is investigated computationally and the reaction driving force as a function of Ca content is explored using density functional theory (DFT) calculations. This exploration allows the identification of threshold voltages which govern the limits of the calciation process. This information is then used to design a four‐step screening strategy and high‐throughput DFT is utilized to search for anode materials with higher properties. Many metalloids (Si, Sb, Ge), (post‐)transition metals (Al, Pb, Cu, Cd, CdCu2) are predicted to be promising inexpensive anode candidates and warrant further experimental investigations.  相似文献   

9.
The volume expansion and dendrite growth of metallic Li anode during charge/discharge processes hinder its practical application in energy storage. Seeking an appropriate host for distributing bulk Li in a 3D manner is an effective way to solve these problems. Here, a novel porous graphene scaffold with cellular chambers for incorporating Li metal is presented. Using such a unique host, ultrathin Li layers of 3 µm in thickness are anchored on graphene to form porous microstructures, which provides much more reaction sites for Li ions compared with that of bulk Li, significantly promoting the reversibility of Li stripping and plating. Also the high current density can be effectively dissipated by the graphene scaffold to remarkably improve the rate capability of Li anode. The symmetrical Li cell using such a Li anode can run stably for 200 cycles at 5 mA cm?2 and even 70 cycles at 10 mA cm?2 in an unmodified carbonate‐based electrolyte, which has rarely been achieved in such aggressive working conditions. Lithium‐ion capacitor cells using this anode also show outstanding rate capability and cycling stability, which can work at an ultrahigh current density of 30 A g?1 and keep steady for over 4000 cycles at 3.75 A g?1.  相似文献   

10.
The safety hazards and low Coulombic efficiency originating from the growth of lithium dendrites and decomposition of the electrolyte restrict the practical application of Li metal batteries (LMBs). Inspired by the low cost of low concentration electrolytes (LCEs) in industrial applications, dual‐salt LCEs employing 0.1 m Li difluorophosphate (LiDFP) and 0.4 m LiBOB/LiFSI/LiTFSI are proposed to construct a robust and conductive interphase on a Li metal anode. Compared with the conventional electrolyte using 1 m LiPF6, the ionic conductivity of LCEs is reduced but the conductivity decrement of the separator immersed in LCEs is moderate, especially for the LiDFP–LiFSI and LiDFP–LiTFSI electrolytes. The accurate Coulombic efficiency (CE) of the Li||Cu cells increases from 83.3% (electrolyte using 1 m LiPF6) to 97.6%, 94.5%, and 93.6% for LiDFP–LiBOB, LiDFP–LiFSI, and LiDFP–LiTFSI electrolytes, respectively. The capacity retention of Li||LiFePO4 cells using the LiDFP–LiBOB electrolyte reaches 95.4% along with a CE over 99.8% after 300 cycles at a current density of 2.0 mA cm?2 and the capacity reaches 103.7 mAh g?1 at a current density of up to 16.0 mA cm?2. This work provides a dual‐salt LCE for practical LMBs and presents a new perspective for the design of electrolytes for LMBs.  相似文献   

11.
Lithium (Li) metal anodes have long been counted on to meet the increasing demand for high energy, high‐power rechargeable battery systems but they have been plagued by uncontrollable plating, unstable solid electrolyte interphase (SEI) formation, and the resulting low Coulombic efficiency. These problems are even aggravated under commercial levels of current density and areal capacity testing conditions. In this work, the channel‐like structure of a carbonized eggplant (EP) as a stable “host” for Li metal melt infusion, is utilized. With further interphase modification of lithium fluoride (LiF), the as‐formed EP–LiF composite anode maintains ≈90% Li metal theoretical capacity and can successfully suppress dendrite growth and volume fluctuation during cycling. EP–LiF offers much improved symmetric cell and full‐cell cycling performance with lower and more stable overpotential under various areal capacity and elevated rate capability. Furthermore, carbonized EP serves as a light‐weight high‐performance current collector, achieving an average Coulombic efficiency ≈99.1% in ether‐based electrolytes with 2.2 mAh cm?2 cycling areal capacity. The natural structure of carbonized EP will inspire further artificial designs of electrode frameworks for both Li anode and sulfur cathodes, enabling promising candidates for next‐generation high‐energy density batteries.  相似文献   

12.
Lithium (Li) metal anodes are promising candidates for high‐energy‐density batteries. However, uncontrollable dendritic plating behavior and infinite volume expansion are hindering their practical applications. Herein, a novel CuO@Ti‐mesh (CTM) is prepared by microwave‐assisted reactions, followed by pressing on Li wafers, leading to Li/CuO@Ti‐mesh (LCTM) composite anodes. The lithiophilic CuO nanoflowers on Ti‐mesh provides evenly distributed nucleation sites, inducing uniform Li‐ion lateral plating, which can effectively inhibit the growth of Li dendrites and volume expansion during cycling. The as‐prepared LCTM composite anode exhibits high Coulombic efficiency (CE) of 94.2% at 10 mA cm‐2 over 90 cycles. Meanwhile, the LCTM anode shows a low overpotential of 50 mV at 10 mA cm‐2 over 16 000 cycles and a low overpotential of 90 and 250 mV even at ultrahigh current densities of 20 and 40 mA cm‐2. When paired with Li4Ti5O12 (LTO), it enhances the capacity retention of LTO/Li wafer full cells by about two times from 36.6% to 73.0% and 42.0% to 80.0% at 5C and 10C with long‐term cycling. It is hoped that this LCTM anode with ultrahigh rates and ultralong cycle life may put Li‐metal anode forward to practical applications, such as in Li–S, Li‐air batteries, etc.  相似文献   

13.
14.
Lithium (Li) metal is an ideal anode material for high energy density batteries. However, the low Coulombic efficiency (CE) and the formation of dendrites during repeated plating and stripping processes have hindered its applications in rechargeable Li metal batteries. The accurate measurement of Li CE is a critical factor to predict the cycle life of Li metal batteries, but the measurement of Li CE is affected by various factors that often lead to conflicting values reported in the literature. Here, several parameters that affect the measurement of Li CE are investigated and a more accurate method of determining Li CE is proposed. It is also found that the capacity used for cycling greatly affects the stabilization cycles and the average CE. A higher cycling capacity leads to faster stabilization of Li anode and a higher average CE. With a proper operating protocol, the average Li CE can be increased from 99.0% to 99.5% at a high capacity of 6 mA h cm?2 (which is suitable for practical applications) when a high‐concentration ether‐based electrolyte is used.  相似文献   

15.
Lithium‐ion batteries (LIBs) with outstanding energy and power density have been extensively investigated in recent years, rendering them the most suitable energy storage technology for application in emerging markets such as electric vehicles and stationary storage. More recently, sodium, one of the most abundant elements on earth, exhibiting similar physicochemical properties as lithium, has been gaining increasing attention for the development of sodium‐ion batteries (SIBs) in order to address the concern about Li availability and cost—especially with regard to stationary applications for which size and volume of the battery are of less importance. Compared with traditional intercalation reactions, conversion reaction‐based transition metal oxides (TMOs) are prospective anode materials for rechargeable batteries thanks to their low cost and high gravimetric specific capacities. In this review, the recent progress and remaining challenges of conversion reactions for LIBs and SIBs are discussed, covering an overview about the different synthesis methods, morphological characteristics, as well as their electrochemical performance. Potential future research directions and a perspective toward the practical application of TMOs for electrochemical energy storage are also provided.  相似文献   

16.
Lithium (Li) metal has been strongly regarded as the ultimate anode option for next-generation high-energy-density batteries. Nevertheless, the insufficient Coulombic efficiency induced by the extensive active Li loss largely hinders the practical operation of Li metal batteries under wide temperature range. Herein, the temperature-mediated dynamic growth of inactive Li from −20 to 60°C via titration gas chromatograph measurements is quantitatively decoupled. Combined X-ray photoelectronic spectroscopy, cryo-transmission electronic microscopy, and scanning electronic microscopy methods depicted that both solid electrolyte interphase (SEI) characteristics and Li deposition compactness can be profoundly manipulated by working temperature. The elevation of temperature is found to fundamentally aggravate the parasitic reactions and deteriorate the spatial uniformity of SEI, yet promote the lateral growth of Li by kinetic reason. The opposite effects of temperature on SEI properties and Li deposition compactness can properly explain the intricate temperature-dependent growth rates of SEI-Li+ and dead Li0 capacity loss observed under titration gas chromatograph measurements. Design implications towards more stable Li metal anodes with higher reversibility can thus be yielded.  相似文献   

17.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

18.
The infinite volume change and dendritic behavior in alkali metal anodes lead to low Coulombic efficiency and short‐circuit issues that significantly hamper renewed efforts at commercialization. Here, a dendrite‐free alkali metal anode, made by thermally preloading molten Li or Na into a 3D framework with high alkali wettability, is reported. In the mechanically robust 3D framework, carbon fiber (CF) serves as an electrical highway that provides fast charge transfer for the redox reaction. Through a facile solution‐based process, a SnO2 coating is introduced to modify the poor wetting behavior of the carbon framework and drastically improve both the electrochemical performance and reliability. The kinetic barrier to adhesion of molten alkali metals on the CF framework is eliminated by the mixed reaction with SnO2. The growth of dendrites is effectively repressed under the decreased local current density of the 3D framework. In full‐cell configurations with LiFePO4 cathodes, the Li–CF electrode shows reduced polarization and 90% capacity retention after 500 cycles in traditional carbonate electrolyte. Comparable improvements are also observed in 3D electrodes for Na metal batteries. These findings on a stable 3D carbon framework with improved wetting behavior provide significant practical implications for achieving safe and commercially viable alkali metal anodes.  相似文献   

19.
All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号