首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Polymer dielectrics such as poly(vinylidene fluoride) (PVDF) have drawn tremendous attention in high energy density capacitors because of their high dielectric constant and ease of processing. However, the discharged energy density attained with these materials is restrained by the inferior breakdown strength and electric resistivity. Herein, PVDF composite films with a nanosized interlayer of assembled boron nitride nanosheets (BNNSs) that is aligned along the in‐plane direction are prepared through a simple layer‐by‐layer solution‐casting process. Compared to the pristine PVDF, the composite films show remarkably suppressed leakage current, resulting in a high breakdown strength and a superior energy density which are 136% and 275%, respectively, that of the pristine PVDF. The experimental results and computational simulations reveal that the compact and successive interlayer of assembled BNNSs can largely mitigate the local field distortion and block the propagation of electrical treeing, which is advantageous over the conventional dielectric polymer nanocomposites. Notably, unlike the previous dielectric polymer nanocomposites that are usually incorporated with a high volume fraction of nanofillers, i.e., 5–10 vol%, the present composites contain only an extremely low content of nanfillers, e.g., 0.16 vol%. These findings offer a novel paradigm for fabricating high energy density and high efficiency polymer dielectrics.  相似文献   

3.
4.
5.
6.
7.
Electrocatalytic CO2 reduction to fuels is considered a promising strategy for the sustainable carbon cycle. However, the improvement of the catalytic performance of CO2 electrocatalysts still poses many challenges, especially achieving the large partial current density of product and high faradaic efficiency simultaneously, which are essential for future applications of the electrochemical CO2 reduction reaction. In response, herein, an in situ porous Zn catalyst is prepared and exhibits high faradaic efficiency and large CO partial current density at the same time, benefiting from the porous architecture with increased exposure and accessibility of active sites. Furthermore, density functional theory calculations demonstrate that the high faradaic efficiency is attributed to the favorable adsorption energy of the key intermediate, which promotes CO2 electroreduction to CO.  相似文献   

8.
Fiber‐supercapacitors (FSCs) are promising energy storage devices that can complement or even replace microbatteries in miniaturized portable and wearable electronics. Currently, a major challenge for FSCs is achieving ultrahigh volumetric energy and power densities simultaneously, especially when the charge/discharge rates exceed 1 V s?1. Herein, an Au‐nanoparticle‐doped‐MnOx@CoNi‐alloy@carbon‐nanotube (Au–MnOx@CoNi@CNT) core/shell nanocomposite fiber electrode is designed, aiming to boost its charge/discharge rate by taking advantage of the superconductive CoNi alloy network and the greatly enhanced conductivity of the Au doped MnOx active materials. An all‐solid‐state coaxial asymmetric FSC (CAFSC) prototype device made by wrapping this fiber with a holey graphene paper (HGP) exhibits excellent performance at rates up to 10 V s?1, which is the highest charge rate demonstrated so far for FSCs based on pseudocapacitive materials. Furthermore, our fully packaged CAFSC delivers a volumetric energy density of ≈15.1 mW h cm?3, while simultaneously maintaining a high power density of 7.28 W cm?3 as well as a long cycle life (90% retention after 10 000 cycles). This value is the highest among all reported FSCs, even better than that of a typical 4 V/500 µA h thin‐film lithium battery.  相似文献   

9.
Fiber supercapacitors (FSCs) represent a promising class of energy storage devices that can complement or even replace microbatteries in miniaturized portable and wearable electronics. One of their main limitations, however, is the low volumetric energy density when compared with those of rechargeable batteries. Considering the energy density of FSC is proportional to CV2 (E = 1/2 CV2, where C is the capacitance and V is the operating voltage), one would explore high operating voltage as an effective strategy to promote the volumetric energy density. In the present work, an all‐solid‐state asymmetric FSC (AFSC) with a maximum operating voltage of 3.5 V is successfully achieved, by employing an ionic liquid (IL) incorporated gel‐polymer as the electrolyte (EMIMTFSI/PVDF‐HFP). The optimized AFSC is based on MnOx@TiN nanowires@carbon nanotube (NWs@CNT) fiber as the positive electrode and C@TiN NWs@CNT fiber as the negative electrode, which gives rise to an ultrahigh stack volumetric energy density of 61.2 mW h cm?3, being even comparable to those of commercially planar lead‐acid batteries (50–90 mW h cm?3), and an excellent flexibility of 92.7% retention after 1000 blending cycles at 90°. The demonstration of employing the ILs‐based electrolyte opens up new opportunities to fabricate high‐performance flexible AFSC for future portable and wearable electronic devices.  相似文献   

10.
Till date, fabrication of piezoelectric nanogenerator (PNG) with highly durable, high power density, and high energy conversion efficiency is of great concern. Here a flexible, sensitive, cost effective hybrid piezoelectric nanogenerator (HPNG) developed by integrating flexible steel woven fabric electrodes into poly(vinylidene fluoride) (PVDF)/aluminum oxides decorated reduced graphene oxide (AlO‐rGO) nanocomposite film is reported where AlO‐rGO acts as nucleating agent for electroactive β‐phase formation. The HPNG exhibits reliable energy harvesting performance with high output, fast charging capability, and high durability compared with previously reported PVDF based PNGs. This HPNG is capable for harvesting energy from a variety and easy accessible biomechanical and mechanical energy sources such as, body movements (e.g., hand folding, jogging, heel pressing, and foot striking, etc.) and machine vibration. The HPNG exhibits high output power density and energy conversion efficiency, facilitating direct light on different color of several commercial light‐emitting diodes instantly and powers up many portable electronic devices like wrist watch, calculator, speaker, and mobile liquid crystal display (LCD) screen through capacitor charging. More importantly, HPNG retains its performance after long compression cycles (≈158 400), demonstrating great promise as a piezoelectric energy harvester toward practical applications in harvesting biomechanical and mechanical energy for self‐powered systems.  相似文献   

11.
The rapid development of smart wearable and integrated electronic products has urgently increased the requirement for high‐performance microbatteries. Although few lithium ion microbatteries based on organic electrolytes have been reported so far, the problems, such as undesirable energy density, poor flexibility, inflammability, volatility toxicity, and high cost restrict their practical applications in the above‐mentioned electronic products. In order to overcome these problems, a low cost quasi‐solid‐state aqueous zinc ion microbattery (ZIMB) assembled by a vanadium dioxide (B)‐multiwalled carbon nanotubes (VO2 (B)‐MWCNTs) cathode, a zinc nanoflakes anode, and a zinc trifluoromethanesulfonate‐polyvinyl alcohol (Zn(CF3SO3)2‐PVA) hydrogel electrolyte is exploited. As expected, the ZIMB exhibits excellent electrochemical performance, e.g., a high capacity of 314.7 µAh cm?2, an ultrahigh energy density of 188.8 µWh cm?2, and a high power density of 0.61 mW cm?2. Furthermore, the ZIMB also shows high flexibility and excellent high temperature stability: the capacity has no obvious decay when the bending angle is up to 150° and the temperature reaches 100 °C. The ZIMB provides a way to develop next‐generation miniature energy storage devices with high performance.  相似文献   

12.
Lithium‐ion capacitors (LICs) with capacitor‐type cathodes and battery‐type anodes are considered a promising next‐generation advanced energy storages system that meet the requirements of high energy density and power density. However, the mismatch of charge‐storage capacity and electrode kinetics between positive and negative electrodes remains a challenge. Herein, layered SnS2/reduced graphene oxide (RGO) nanocomposites are developed for negative electrodes and a 2D B/N codoped carbon (BCN) nanosheet is designed for the positive electrode. The SnS2/RGO derived from SnS2‐bonded RGO of high conductivity exhibits a capacity of 1198 mA h g?1 at 100 mA g?1. Boron and nitrogen atoms in BCN are found to promote adsorption of anions, which enhance the pseudocapacitive contribution as well as expanding the voltage of LICs. A quantitative kinetics analysis indicates that the SnS2/RGO electrodes with a dominating capacitive mechanism and a diminished intercalation process, benefit the kinetic balance between the two electrodes. With this particular structure, the LIC is able to operate at the highest operating voltage for these devices recorded to date (4.5 V), exhibiting an energy density of 149.5 W h kg?1, a power density of 35 kW kg?1, and a capacity retention ratio of 90% after 10 000 cycles.  相似文献   

13.
Half‐Heusler (HH) compounds have shown great potential in waste heat recovery. Among them, p‐type NbFeSb and n‐type ZrNiSn based alloys have exhibited the best thermoelectric (TE) performance. However, TE devices based on NbFeSb‐based HH compounds are rarely studied. In this work, bulk volumes of p‐type (Nb0.8Ta0.2)0.8Ti0.2FeSb and n‐type Hf0.5Zr0.5NiSn0.98Sb0.02 compounds are successfully prepared with good phase purity, compositional homogeneity, and matchable TE performance. The peak zTs are higher than 1.0 at 973 K for Hf0.5Zr0.5NiSn0.98Sb0.02 and at 1200 K for (Nb0.8Ta0.2)0.8Ti0.2FeSb. Based on an optimal design by a full‐parameters 3D finite element model, a single stage TE module with 8 n‐p HH couples is assembled. A high conversion efficiency of 8.3% and high power density of 2.11 W cm?2 are obtained when hot and cold side temperatures are 997 and 342 K, respectively. Compared to the previous TE module assembled by the same materials, the conversion efficiency is enhanced by 33%, while the power density is almost the same. Given the excellent mechanical robustness and thermal stability, matchable thermal expansion coefficient and TE properties of NbFeSb and ZrNiSn based HH alloys, this work demonstrates their great promise for power generation with both high conversion efficiency and high power density.  相似文献   

14.
15.
Wearable textile energy storage systems are rapidly growing, but obtaining carbon fiber fabric electrodes with both high capacitances to provide a high energy density and mechanical strength to allow the material to be weaved or knitted into desired devices remains challenging. In this work, N/O‐enriched carbon cloth with a large surface area and the desired pore volume is fabricated. An electrochemical oxidation method is used to modify the surface chemistry through incorporation of electrochemical active functional groups to the carbon surface and to further increase the specific surface area and the pore volume of the carbon cloth. The resulting carbon cloth electrode presents excellent electrochemical properties, including ultrahigh areal capacitance with good rate ability and cycling stability. Furthermore, the fabricated symmetric supercapacitors with a 2 V stable voltage window deliver ultrahigh energy densities (6.8 mW h cm?3 for fiber‐shaped samples and 9.4 mW h cm?3 for fabric samples) and exhibit excellent flexibility. The fabric supercapacitors are further tested in a belt‐shaped device as a watchband to power an electronic watch for ≈9 h, in a heart‐shaped logo to supply power for ≈1 h and in a safety light that functions for ≈1 h, indicating various promising applications of these supercapacitors.  相似文献   

16.
17.
The solar‐rechargeable electric energy storage systems (SEESSs), which can simultaneously harvest and store solar energy, are considered a promising next‐generation renewable energy supply system. However, the difficulty in meeting the demands of higher overall photoelectric conversion and storage efficiency (PCSE) with both high power density and large energy density in the current SEESSs severely limit their practical application. Herein, a new class is demonstrated of portable and highly efficient SEESS that uniquely integrates a perovskite solar module (PSM) and an aluminum‐ion battery (AIB) directly on a bifunctional aluminum electrode without any external circuit. Such nanostructural design in the SEESS not only exhibits fast photo‐charge/discharge rate (less than one minute) with high power density (above 5000 W kg?1), but also delivers a high energy density (above 43 Wh kg?1). By rationally matching the maximum power point voltage of PSM with AIB charging voltage, an excellent solar‐charging efficiency of 15.2% and a high PCSE of 12.04% are achieved, which is among the best in all reported portable SEESSs. Moreover, enhanced PCSE is observed as the light intensity decreases, which makes such SEESS immune from the geographical location and climate limitations for diverse practical applications.  相似文献   

18.
An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time‐delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two‐pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device‐relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide‐bandgap donor polymers: poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)‐state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.  相似文献   

19.
Cacti growing in forests potentially experience growth limitation due to reduced light availability. To test this hypothesis, we studied the population structure of Opuntia echios var. gigantea at 15 sites on the south side of Isla Santa Cruz, Galípagos Islands, Ecuador. Populations were located in communities ranging from arid scrub at low elevations to closed‐canopy tropical dry forest at higher elevations. Ordination confirmed the existence of a strong elevation‐vegetation gradient. Opuntia abundance peaked at lower elevations (ca 30 m), with lower densities in closed‐canopy sites. For populations in scrub vegetation, density declined fairly regularly with plant height. Populations in forested sites had few plants of intermediate height, suggesting periodic recruitment. Scrub populations had random dispersion, while those in forests were aggregated. The change in spatial pattern may be related to a change in primary reproductive mode from asexual propagation via fallen fruits to propagation via fallen cladodes. Height was significantly correlated with stem diameter. Intercepts of these relationships increased toward higher elevations, probably in response to the increasing height of the surrounding canopy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号