首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Compared to inorganic semiconductors and/or fullerene derivatives, nonfullerene n‐type organic semiconductors present some advantages, such as low‐temperature processing, flexibility, and molecule structure diversity, and have been widely used in perovskite solar cells (PSCs). In this research news article, the recent advances in nonfullerene n‐type organic semiconductors which function as electron‐transporting, interface‐modifying, additive, and light‐harvesting materials in PSCs are summarized. The remaining challenges and promising future directions of nonfullerene‐based PSCs are also discussed.  相似文献   

2.
Long device lifetime is still a missing key requirement in the commercialization of nonfullerene acceptor (NFA) organic solar cell technology. Understanding thermodynamic factors driving morphology degradation or stabilization is correspondingly lacking. In this report, thermodynamics is combined with morphology to elucidate the instability of highly efficient PTB7‐Th:IEICO‐4F binary solar cells and to rationally use PC71BM in ternary solar cells to reduce the loss in the power conversion efficiency from ≈35% to <10% after storage for 90 days and at the same time improve performance. The hypomiscibility observed for IEICO‐4F in PTB7‐Th (below the percolation threshold) leads to overpurification of the mixed domains. By contrast, the hypermiscibility of PC71BM in PTB7‐Th of 48 vol% is well above the percolation threshold. At the same time, PC71BM is partly miscible in IEICO‐4F suppressing crystallization of IEICO‐4F. This work systematically illustrates the origin of the intrinsic degradation of PTB7‐Th:IEICO‐4F binary solar cells, demonstrates the structure–function relations among thermodynamics, morphology, and photovoltaic performance, and finally carries out a rational strategy to suppress the degradation: the third component needs to have a miscibility in the donor polymer at or above the percolation threshold, yet also needs to be partly miscible with the crystallizable acceptor.  相似文献   

3.
Developing efficient organic solar cells (OSCs) with relatively thick active layer compatible with the roll to roll large area printing process is an inevitable requirement for the commercialization of this field. However, typical laboratory OSCs generally exhibit active layers with optimized thickness around 100 nm and very low thickness tolerance, which cannot be suitable for roll to roll process. In this work, high performance of thick‐film organic solar cells employing a nonfullerene acceptor F–2Cl and a polymer donor PM6 is demonstrated. High power conversion efficiencies (PCEs) of 13.80% in the inverted structure device and 12.83% in the conventional structure device are achieved under optimized conditions. PCE of 9.03% is obtained for the inverted device with active layer thickness of 500 nm. It is worth noting that the conventional structure device still maintains the PCE of over 10% when the film thickness of the active layer is 600 nm, which is the highest value for the NF‐OSCs with such a large active layer thickness. It is found that the performance difference between the thick active layer films based conventional and inverted devices is attributed to their different vertical phase separation in the active layers.  相似文献   

4.
Organic solar cells that are free of burn‐in, the commonly observed rapid performance loss under light, are presented. The solar cells are based on poly(3‐hexylthiophene) (P3HT) with varying molecular weights and a nonfullerene acceptor (rhodanine‐benzothiadiazole‐coupled indacenodithiophene, IDTBR) and are fabricated in air. P3HT:IDTBR solar cells light‐soaked over the course of 2000 h lose about 5% of power conversion efficiency (PCE), in stark contrast to [6,6]‐Phenyl C61 butyric acid methyl ester (PCBM)‐based solar cells whose PCE shows a burn‐in that extends over several hundreds of hours and levels off at a loss of ≈34%. Replacing PCBM with IDTBR prevents short‐circuit current losses due to fullerene dimerization and inhibits disorder‐induced open‐circuit voltage losses, indicating a very robust device operation that is insensitive to defect states. Small losses in fill factor over time are proposed to originate from polymer or interface defects. Finally, the combination of enhanced efficiency and stability in P3HT:IDTBR increases the lifetime energy yield by more than a factor of 10 when compared with the same type of devices using a fullerene‐based acceptor instead.  相似文献   

5.
Organic solar cells are promising in terms of full‐solution‐processing which enables low‐cost and large‐scale fabrication. While single‐junction solar cells have seen a boost in power conversion efficiency (PCE), multi‐junction solar cells are promising to further enhance the PCE. In all‐solution‐processed multi‐junction solar cells, interfacial losses are often encountered between hole‐transporting layer (HTL) and the active layers and therefore greatly limit the application of newly developed high‐performance donor and acceptor materials in multi‐junction solar cells. Here, the authors report on a systematic study of interface losses in both single‐junction and multi‐junction solar cells based on representative polymer donors and HTLs using electron spectroscopy and time‐of‐flight secondary ion mass spectrometry. It is found that a facile mixed HTL containing poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and MoO x nanoparticles successfully overcomes the interfacial losses in both single‐ and multi‐junction solar cells based on various active layers by reducing interface protonation, promoting better energy‐level alignment, and forming a dense and smooth layer. Solution‐processed single‐junction solar cells are demonstrated to reach the same performance as with evaporated MoO x (over 7%). Multi‐junction solar cells with polymers containing nitrogen atoms as the first layer and the mixed PEDOT:PSS and MoO x nanoparticles as hole extraction layer reach fill factor (FF) of over 60%, and PCE of over 8%, while the identical stack with pristine PEDOT:PSS or MoO x nanoparticles show FF smaller than 50% and PCE less than 5%.  相似文献   

6.
Understanding the vertical phase separation of donor and acceptor compounds in organic photovoltaics is requisite for the control of charge transport behavior and the achievement of efficient charge collection. Here, the vertically phase‐separated morphologies of poly(3‐hexylthiophene):[6,6]phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) blend films are examined with transmission electron microtomography, dynamic secondary ion mass spectroscopy, and X‐ray photoelectron spectroscopy. The 3D morphologies of the processed films are analyzed and how the solvent additive causes vertical segregation is determined. The photocurrent–voltage characteristics of the vertically segregated blend films are strongly dependent on the 3D morphological organization of the donor and acceptor compounds in the photoactive layer. This dependence is correlated with asymmetric carrier transport at the buried interface and the air surface in the vertically segregated blend films.  相似文献   

7.
8.
Various substituents have been incorporated into nonfullerene acceptors (NFAs) to modulate absorption scopes and energy levels for boosting efficiencies of organic solar cells (OSCs). The manipulation of the NFAs' molecular order and crystallinity via those substitutions is equally crucial to OSC performances, which yet remains interesting and challenging. The hydroxyl group, which can potentially form strong intermolecular hydrogen bonds (H‐bonds) for improving molecular arrangements, has, however, never been considered. Herein, two hydroxyl‐functionalized NFAs, IT‐OH with one hydroxyl and IT‐DOH with two hydroxyls, are synthesized to tune the molecular packing and crystallinity. The ordered molecular arrangement and higher crystallinity are observed for the IT‐OH and IT‐DOH than the parent ITIC. This is assigned to the formation of intermolecular H‐bonds induced by the hydroxyls, which elongates molecular conjugated planes leading to long‐range‐ordered structures via π–π stacking. By the appropriate crystallinity and miscibility with donor polymer, an IT‐DOH‐based nonannealed OSC affords an efficiency of 12.5% with good device stability. This work provides a promising strategy to tune the molecular packing and crystallinity to design NFAs by introducing hydroxyl groups.  相似文献   

9.
Organic solar cells (OSCs) made of donor/acceptor bulk‐heterojunction active layers have been of widespread interest in converting sunlight to electricity. Characterizing of the complex morphology at multiple length scales of polymer:nonfullerene small molecular acceptor (SMA) systems remains largely unexplored. Through detailed characterizations (hard/soft X‐ray scattering) of the record‐efficiency polymer:SMA system with a close analog, quantitative morphological parameters are related to the device performance parameters and fundamental morphology–performance relationships that explain why additive use and thermal annealing are needed for optimized performance are established. A linear correlation between the average purity variations at small length scale (≈10 nm) and photovoltaic device characteristics across all processing protocols is observed in ≈12%‐efficiency polymer:SMA systems. In addition, molecular interactions as reflected by the estimated Flory–Huggins interaction parameters are used to provide context of the room temperature morphology results. Comparison with results from annealed devices suggests that the two SMA systems compared show upper and lower critical solution temperature behavior, respectively. The in‐depth understanding of the complex multilength scale nonfullerene OSC morphology may guide the device optimization and new materials development and indicates that thermodynamic properties of materials systems should be studied in more detail to aid in designing optimized protocols efficiently.  相似文献   

10.
In this study, a comprehensive analytical model to quantify the total nongeminate recombination losses, originating from bimolecular as well as bulk and surface trap‐assisted recombination mechanisms in nonfullerene‐based bulk heterojunction organic solar cells is developed. This proposed model is successfully employed to obtain the different contributions to the recombination current of the investigated solar cells under different illumination intensities. Additionally, the model quantitatively describes the experimentally measured open‐circuit voltage versus light intensity dependence. Most importantly, it is possible to calculate the experimental results with the same fitting parameter values from the presented model. The validity of this model is also proven by a combination of other independent, steady‐state, and transient experimental techniques. This new powerful analytical tool will enable researchers in the photovoltaic community to take into account the synergetic contribution from all relevant types of nongeminate recombination losses in different optoelectronic systems and target their analysis of recombination dynamics at any operating voltage.  相似文献   

11.
As a predominant fabrication method of organic solar cells (OSCs), casting of a bulk heterojunction (BHJ) structure presents overwhelming advantages for achieving higher power conversion efficiency (PCE). However, long‐term stability and mechanical strength are significantly crucial to realize large‐area and flexible devices. Here, controlling blend film morphology is considered as an effective way toward co‐optimizing device performance, stability, and mechanical properties. A PCE of 12.27% for a P‐i‐N‐structured OSC processed by sequential blade casting (SBC) is reported. The device not only outperforms the as‐cast BHJ devices (11.01%), but also shows impressive stability and mechanical properties. The authors corroborate such enhancements with improved vertical phase separation and purer phases toward more efficient transport and collection of charges. Moreover, adaptation of SBC strategy here will result in thermodynamically favorable nanostructures toward more stable film morphology, and thus improving the stability and mechanical properties of the devices. Such co‐optimization of OSCs will pave ways toward realizing the highly efficient, large‐area, flexible devices for future endeavors.  相似文献   

12.
Here, it is investigated whether an energetic cascade between mixed and pure regions assists in suppressing recombination losses in non‐fullerene acceptor (NFA)‐based organic solar cells. The impact of polymer‐NFA blend composition upon morphology, energetics, charge carrier recombination kinetics, and photocurrent properties are studied. By changing film composition, morphological structures are varied from consisting of highly intermixed polymer‐NFA phases to consisting of both intermixed and pure phase. Cyclic voltammetry is employed to investigate the impact of blend morphology upon NFA lowest unoccupied molecular orbital (LUMO) level energetics. Transient absorption spectroscopy reveals the importance of an energetic cascade between mixed and pure phases in the electron–hole dynamics in order to well separate spatially localized electron–hole pairs. Raman spectroscopy is used to investigate the origin of energetic shift of NFA LUMO levels. It appears that the increase in NFA electron affinity in pure phases relative to mixed phases is correlated with a transition from a relatively planar backbone structure of NFA in pure, aggregated phases, to a more twisted structure in molecularly mixed phases. The studies focus on addressing whether aggregation‐dependent acceptor LUMO level energetics are a general design requirement for both fullerene and NFAs, and quantifying the magnitude, origin, and impact of such energetic shifts upon device performance.  相似文献   

13.
Solution‐processed organic solar cells (OSCs) are promising low‐cost, flexible, portable renewable sources for future energy supply. The state‐of‐the‐art OSCs are typically fabricated from a bulk‐heterojunction (BHJ) active layer containing well‐mixed donor and acceptor molecules in the nanometer regime. However, BHJ solar cells suffer from stability problems caused by the severe morphological changes upon thermal or illumination stress. In comparison, single‐component organic solar cells (SCOSCs) based on a double‐cable conjugated polymer with a covalently stabilized microstructure is suggested to be a key strategy for superior long‐term stability. Here, the thermal‐ and photostability of SCOSCs based on a model double‐cable polymer is systematically investigated. It is encouraging to find that under 90 °C & 1 sun illumination, the performance of SCOSCs remains substantially stable. Transport measurements show that charge generation and recombination (lifetime and recombination order) hardly change during the aging process. Particularly, the SCOSCs exhibit ultrahigh long‐term thermal stability with 100% PCE remaining after heating at temperature up to 160 °C for over 400 h, indicating an excellent candidate for extremely rugged applications.  相似文献   

14.
The current work reports a high power conversion efficiency (PCE) of 9.54% achieved with nonfullerene organic solar cells (OSCs) based on PTB7‐Th donor and 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene) (ITIC) acceptor fabricated by doctor‐blade printing, which has the highest efficiency ever reported in printed nonfullerene OSCs. Furthermore, a high PCE of 7.6% is realized in flexible large‐area (2.03 cm2) indium tin oxide (ITO)‐free doctor‐bladed nonfullerene OSCs, which is higher than that (5.86%) of the spin‐coated counterpart. To understand the mechanism of the performance enhancement with doctor‐blade printing, the morphology, crystallinity, charge recombination, and transport of the active layers are investigated. These results suggest that the good performance of the doctor‐blade OSCs is attributed to a favorable nanoscale phase separation by incorporating 0.6 vol% of 1,8‐diiodooctane that prolongs the dynamic drying time of the doctor‐bladed active layer and contributes to the migration of ITIC molecules in the drying process. High PCE obtained in the flexible large‐area ITO‐free doctor‐bladed nonfullerene OSCs indicates the feasibility of doctor‐blade printing in large‐scale fullerene‐free OSC manufacturing. For the first time, the open‐circuit voltage is increased by 0.1 V when 1 vol% solvent additive is added, due to the vertical segregation of ITIC molecules during solvent evaporation.  相似文献   

15.
Reducing energy loss (Eloss) is of critical importance to improving the photovoltaic performance of organic solar cells (OSCs). Although nonradiative recombination ( E loss nonrad ) is investigated in quite a few works, the method for modulating E loss nonrad is seldom reported. Here, a new method of depressing Eloss is reported for nonfullerene OSCs. In addition to ternary‐blend bulk heterojunction (BHJ) solar cells, it is proved that a small molecular material (NRM‐1) can be selectively dispersed into the acceptor phase in the PBDB‐T:IT‐4F‐based OSC, resulting in lower E loss rad and E loss nonrad , and hence a significant improvement in the open‐circuit voltage (VOC); under an optimal feed ratio of NRM‐1, an enhanced power conversion efficiency can also be gained. Moreover, the role of NRM‐1 in the method is illustrated and its applicability for several other representative OSCs is validated. This work paves a new pathway to reduce the Eloss for nonfullerene OSCs.  相似文献   

16.
A nonfullerene acceptor (NFA) with acceptor–donor–acceptor (A–D–A) architecture, i‐IEICO‐2F, based on 4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene as an electron‐donating core and 2‐(6‐fluoro‐2,3‐dihydro‐3‐oxo‐1H‐inden‐1‐ylidene)‐propanedinitrile as electron‐withdrawing end groups, is designed and synthesized. i‐IEICO‐2F has a twist structure in the main conjugated chain, which causes blueshifted absorption and leads to harmonious absorption with a high bandgap donor. The bandgap of i‐IEICO‐2F compliments the bandgap of suitable wide bandgap donor polymers such as J52, leading to complete light absorption throughout the visible spectrum. Devices based on i‐IEICO‐2F exhibit optimized photovoltaic performance including an open‐circuit voltage of 0.93 V, a short‐circuit current density of 16.61 mA cm?2, and a fill factor of 73%, and result in a power conversion efficiency (PCE) of 11.28%. The i‐IEICO‐2F‐based devices reach PCEs of >11% without using any additives or post‐treatments. Devices are found to be thermally stable and maintain 44% of their initial PCE after 184.5 h of continuous thermal annealing (TA) treatment at 150 °C. Based on UV, atomic force microscopy (AFM), and grazing incidence wide angle X‐ray scattering (GIWAXS) results, i‐IEICO‐2F devices show almost identical morphology and molecular orientation throughout the TA treatment and excellent stability compared to other IEICO derivatives.  相似文献   

17.
Compared to the rapid development of nonfullerene organic solar cells (OSCs) based on the state‐of‐the‐art indacenodithiophene (IDT)‐based small molecule acceptors (SMAs), the progress for perylene diimide (PDI)‐based electron acceptors has lagged behind owing to the lack of understanding on the structure–morphology–performance relationship of PDI SMAs. Given the ease of synthesis for PDIs and their high intrinsic electron mobility, it is crucial to identify key material parameters that influence the polymer:PDI blend morphology and to develop rational approaches for molecular design toward high‐performance PDI‐based SMAs. In this study, three pairs of PDI‐based SMAs with and without ring‐fusion are investigated and it is found that ring‐fusion and domain purity are the key structural and morphological factors determining the fill factors (FFs) and efficiencies of PDI‐based nonfullerene OSCs. This data shows that nonfullerene OSCs based on the ring‐fused PDI‐based SMAs exhibit much higher average domain purity and thus increased charge mobilities, which lead to enhanced FFs compared to those solar cells based on nonfused PDIs. This is explained by higher Florry Huggins interaction parameters as observed by melting point depression measurements. This study suggests that increasing repulsive molecular interactions to lower the miscibility between the polymer donor and PDI acceptor is the key to improve the FF and performance of PDI‐based devices.  相似文献   

18.
We report on the effects of screening of the electric field by doping‐induced mobile charges on photocurrent collection in operational organic solar cells. Charge transport and recombination were studied using double injection (DI) and charge extraction by linearly increasing voltage (CELIV) transient techniques in bulk‐heterojunction solar cells made from acceptor‐donor blends of poly(3‐n‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PC60BM). It is shown that the screening of the built‐in field in operational solar cells can be controlled by an external voltage while the influence on charge transport and recombination is measured. An analytical theory to extract the bimolecular recombination coefficient as a function of electric field from the injection current is also reported. The results demonstrate that the suppressed (non‐Langevin) bimolecular recombination rate and charge collection are not strongly affected by native doping levels in this materials combination. Hence, it is not necessary to reduce the level of doping further to improve the device performance of P3HT‐based solar cells.  相似文献   

19.
Charge transport in organic photovoltaic (OPV) devices is often characterized by steady‐state mobilities. However, the suitability of steady‐state mobilities to describe charge transport has recently been called into question, and it has been argued that dispersion plays a significant role. In this paper, the importance of the dispersion of charge carrier motion on the performance of organic photovoltaic devices is investigated. An experiment to measure the charge extraction time under realistic operating conditions is set up. This experiment is applied to different blends and shows that extraction time is directly related to the geometrical average of the steady‐state mobilities. This demonstrates that under realistic operating conditions the steady‐state mobilities govern the charge extraction of OPV and gives a valuable insight in device performance.  相似文献   

20.
Charge‐transfer (CT) state electroluminescence is investigated in several polymer:fullerene bulk heterojunction solar cells. The ideality factor of the electroluminescence reveals that the CT emission in polymer:fullerene solar cells originates from free‐carrier bimolecular recombination at the donor‐acceptor interface, rather than a charge‐trap‐mediated process. The fingerprint of the presence of nonradiative trap‐assisted recombination, a voltage‐dependent CT electroluminescence quantum efficiency, is only observed for the P3HT:PCBM system, which is explained by a reduction of the competing bimolecular recombination rate. These results are in agreement with measurements of the illumination‐intensity dependence of the open‐circuit voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号