首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Albedo change during feedstock production can substantially alter the life cycle climate impact of bioenergy. Life cycle assessment (LCA) studies have compared the effects of albedo and greenhouse gases (GHGs) based on global warming potential (GWP). However, using GWP leads to unequal weighting of climate forcers that act on different timescales. In this study, albedo was included in the time‐dependent LCA, which accounts for the timing of emissions and their impacts. We employed field‐measured albedo and life cycle emissions data along with time‐dependent models of radiative transfer, biogenic carbon fluxes and nitrous oxide emissions from soil. Climate impacts were expressed as global mean surface temperature change over time (?T) and as GWP. The bioenergy system analysed was heat and power production from short‐rotation willow grown on former fallow land in Sweden. We found a net cooling effect in terms of ?T per hectare (?3.8 × 10–11 K in year 100) and GWP100 per MJ fuel (?12.2 g CO2e), as a result of soil carbon sequestration via high inputs of carbon from willow roots and litter. Albedo was higher under willow than fallow, contributing to the cooling effect and accounting for 34% of GWP100, 36% of ?T in year 50 and 6% of ?T in year 100. Albedo dominated the short‐term temperature response (10–20 years) but became, in relative terms, less important over time, owing to accumulation of soil carbon under sustained production and the longer perturbation lifetime of GHGs. The timing of impacts was explicit with ?T, which improves the relevance of LCA results to climate targets. Our method can be used to quantify the first‐order radiative effect of albedo change on the global climate and relate it to the climate impact of GHG emissions in LCA of bioenergy, alternative energy sources or land uses.  相似文献   

2.
The potential for climate change mitigation by bioenergy crops and terrestrial carbon sinks has been the object of intensive research in the past decade. There has been much debate about whether energy crops used to offset fossil fuel use, or carbon sequestration in forests, would provide the best climate mitigation benefit. Most current food cropland is unlikely to be used for bioenergy, but in many regions of the world, a proportion of cropland is being abandoned, particularly marginal croplands, and some of this land is now being used for bioenergy. In this study, we assess the consequences of land‐use change on cropland. We first identify areas where cropland is so productive that it may never be converted and assess the potential of the remaining cropland to mitigate climate change by identifying which alternative land use provides the best climate benefit: C4 grass bioenergy crops, coppiced woody energy crops or allowing forest regrowth to create a carbon sink. We do not present this as a scenario of land‐use change – we simply assess the best option in any given global location should a land‐use change occur. To do this, we use global biomass potential studies based on food crop productivity, forest inventory data and dynamic global vegetation models to provide, for the first time, a global comparison of the climate change implications of either deploying bioenergy crops or allowing forest regeneration on current crop land, over a period of 20 years starting in the nominal year of 2000 ad . Globally, the extent of cropland on which conversion to energy crops or forest would result in a net carbon loss, and therefore likely always to remain as cropland, was estimated to be about 420.1 Mha, or 35.6% of the total cropland in Africa, 40.3% in Asia and Russia Federation, 30.8% in Europe‐25, 48.4% in North America, 13.7% in South America and 58.5% in Oceania. Fast growing C4 grasses such as Miscanthus and switch‐grass cultivars are the bioenergy feedstock with the highest climate mitigation potential. Fast growing C4 grasses such as Miscanthus and switch‐grass cultivars provide the best climate mitigation option on ≈485 Mha of cropland worldwide with ~42% of this land characterized by a terrain slope equal or above 20%. If that land‐use change did occur, it would displace ≈58.1 Pg fossil fuel C equivalent (Ceq oil). Woody energy crops such as poplar, willow and Eucalyptus species would be the best option on only 2.4% (≈26.3 Mha) of current cropland, and if this land‐use change occurred, it would displace ≈0.9 Pg Ceq oil. Allowing cropland to revert to forest would be the best climate mitigation option on ≈17% of current cropland (≈184.5 Mha), and if this land‐use change occurred, it would sequester ≈5.8 Pg C in biomass in the 20‐year‐old forest and ≈2.7 Pg C in soil. This study is spatially explicit, so also serves to identify the regional differences in the efficacy of different climate mitigation options, informing policymakers developing regionally or nationally appropriate mitigation actions.  相似文献   

3.
Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land‐use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreased GHG emissions. For policymakers to assess the most cost‐effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence‐based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from the UK, EU and internationally. Outcomes from global research on bioenergy land‐use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land‐use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life‐cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycle GHG mitigation from bioenergy relative to conventional energy sources. We conclude that the GHG balance of perennial bioenergy crop cultivation will often be favourable, with maximum GHG savings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry.  相似文献   

4.
The net CO2 exchange of forests was investigated to study net atmospheric impact of forest bioenergy production (BP) and utilization in Finnish boreal conditions. Net CO2 exchange was simulated with a life cycle assessment tool over a 90‐year period and over the whole Finland based on National Forest Inventory data. The difference in the net exchanges between the traditional timber production (TP) and BP regime was considered the net atmospheric impact of forest bioenergy utilization. According to the results, forests became net sources of CO2 after about 20 years of simulation, and the net exchange was higher in the BP regime than in the TP regime until the middle of the simulation period. From 2040 onwards, the net exchange started to decrease in both regimes and became higher in the TP regime, excluding the last decade of the simulation. The shift of forests to becoming a CO2 source reflected the decrease in CO2 sequestration due to the increasing share of recently harvested and seedling stands that are acting as sources of CO2, and an increase of emissions from degradation of wood products. When expressed in terms of radiative forcing, the net atmospheric impact was on average 19% less for bioenergy compared with that for coal energy over the whole simulation period. The results show the importance of time dependence when considering dynamic forest ecosystems in BP and climate change mitigation. Furthermore, the results emphasize the dualistic role and possibilities of forest management in controlling the build and release of carbon into and from the stocks and in controlling the rate of the build speed, i.e. growth. This information is needed in identifying the capability and possibilities of ecosystems to produce biomass for energy, alongside other products and ecosystem services (e.g. pulp wood and timber), and simultaneously to mitigate climate change.  相似文献   

5.
Changing forest management practices towards more intensive biomass utilization for energy purposes will affect the sustainability of resource management. The Tool for Sustainability Impact Assessment was applied to evaluate the environmental, social, and economic sustainability impacts of the stepwise increased extraction of forest biomass of three typical Scandinavian Scots pine bioenergy production chains (BPCs). The assessed sources of the woody biomass were pellets as a by‐product of the sawmilling industry, wood chips deriving from early whole‐tree harvesting, and residues from final cuttings. Three commercially practiced BPCs were compared. By the additional extraction of biomass for heat production, the employment increased by 0.6 person‐years 1000 m?3 solid wood chips, while there was a decrease in the costs and greenhouse gases emitted per unit of heat consumed. Furthermore this practice did not only add positive socio‐economic but also positive environmental impacts on sustainability, particularly on the greenhouse gas balance and the energy efficiency ratio (input to output ratio along the BPC), which was determined to be 1–24. Potential drawbacks, on the other hand, include decreasing nutrient returns to the soil and the associated potential reduction in future stand productivity. Fertilization might be needed to maintain sustainable forest growth on poor sites.  相似文献   

6.
东北有机及常规大豆对环境影响的生命周期评价   总被引:4,自引:0,他引:4  
罗燕  乔玉辉  吴文良 《生态学报》2011,31(23):7170-7178
选择我国主要有机出口农产品之一——大豆作为研究对象,采用生命周期评价、DNDC模型、实地调研等方法建立大豆生命周期资源消耗和环境排放清单,分析比较了出口型有机大豆、国内消费型有机大豆以及国内消费型常规大豆的生命周期环境影响.结果表明:3种不同生产消费型大豆生命周期中资源消耗、酸化以及全球变暖对综合环境影响贡献最明显,基本上占到综合环境影响评价的30%左右,而富营养化和生态毒性的贡献率较低,小于10%.从生命周期的不同阶段分析,3种消费模式的大豆其运输阶段对于各分类环境影响的贡献率最大,都在50%以上,对资源消耗的贡献率更是在80%以上.从2种不同的生产模式看无论是全球变暖、酸化、资源消耗还是生态毒性都是有机大豆的环境影响综合指数小于常规大豆,对环境产生的负面影响较小.综合比较3种不同生产消费型大豆,国内消费的有机大豆生命周期综合环境影响最小,其环境影响综合指数比常规大豆的减少31%.但是出口有机大豆由于出口使运输距离延长,其生命周期综合环境影响最大.因此,环境管理关键是提倡有机产品本地消费以缩短运输距离,或者采用环保型能源以减少环境排放.  相似文献   

7.
There is a strong need for methods within life cycle assessment (LCA) that enable the inclusion of all complex aspects related to land use and land use change (LULUC). This article presents a case study of the use of one hectare (ha) of forest managed for the production of wood for bioenergy production. Both permanent and temporary changes in above‐ground biomass are assessed together with the impact on biodiversity caused by LULUC as a result of forestry activities. The impact is measured as a product of time and area requirements, as well as by changes in carbon pools and impacts on biodiversity as a consequence of different management options. To elaborate the usefulness of the method as well as its dependency on assumptions, a range of scenarios are introduced in the study. The results show that the impact on climate change from LULUC dominates the results, compared to the impact from forestry operations. This clearly demonstrates the need to include LULUC in an LCA of forestry products. For impacts both on climate change and biodiversity, the results show large variability based on what assumptions are made; and impacts can be either positive or negative. Consequently, a mere measure of land used does not provide any meaning in LCA, as it is not possible to know whether this contributes a positive or negative impact.  相似文献   

8.
Life cycle assessment (LCA) has only had limited application in the geotechnical engineering discipline, though it has been widely applied to civil engineering systems such as pavements and roadways. A review of previous geotechnical LCAs showed that most studies have tracked a small set of impact categories, such as energy and global warming potential. Accordingly, currently reported environmental indicators may not effectively or fully capture important environmental impacts and tradeoffs associated with geotechnical systems, including those associated with land and soil resources. This research reviewed previous studies, methods, and models for assessment of land use and soil‐related impacts to understand their applicability to geotechnical LCA. The results of this review show that critical gaps remain in current knowledge and practice. In particular, further development or refinement of environmental indicators, impact categories, and cause–effect pathways is needed as they pertain to geotechnical applications—specifically those related to soil quality, soil functions, and the ecosystem services soils provide. In addition, many existing methods emerge from research on land use and land use change related to other disciplines (e.g., agriculture). For applicability to geotechnical projects, the resolution of many of these methods and resulting indicators need to be downscaled from the landscape/macro scale to the project scale. In the near term, practitioners of geotechnical LCA should begin tracking changes to soil properties and report impacts to land and soil resources qualitatively.  相似文献   

9.
Renewable energy and greenhouse gas (GHG) reduction targets are driving an acceleration in the use of bioenergy resources. The environmental impact of national and regional development plans must be assessed in compliance with the EU Strategic Environmental Assessment (SEA) Directive (2001/42/EC). Here, we quantify the environmental impact of an Irish Government bioenergy plan to replace 30% of peat used in three peat‐burning power stations, located within the midlands region, with biomass. Four plan alternatives for supplying biomass to the power plant were considered in this study: (1) importation of palm kernel shell from south‐east Asia, (2) importation of olive cake pellets from Spain and (3) growing either willow or (4) Miscanthus in the vicinity of the power stations. The impact of each alternative on each of the environmental receptors proposed in the SEA Directive was first quantified before the data were normalized on either an Irish, regional or global scale. Positive environmental impacts were very small compared to the negative environmental impacts for each of the plan alternatives considered. Comparison of normalized indicator values confirmed that the adverse environmental consequences of each plan alternative are concentrated at the location where the biomass is produced. The analysis showed that the adverse environmental consequences of biomass importation are substantially greater than those associated with the use of willow and Miscanthus grown on former grassland. The use of olive cake pellets had a greater adverse environmental effect compared to the use of peat whereas replacement of peat with either willow or Miscanthus feedstocks led to a substantial reduction in environmental pressure. The proposed assessment framework combines the scope of SEA with the quantitative benefits of life cycle assessment and can be used to evaluate the environmental consequences of bioenergy plans.  相似文献   

10.
As governments elaborate strategies to counter climate change, there is a need to compare the different options available on an environmental basis. This study proposes a life cycle assessment framework integrating the Lashof accounting methodology, which enables the assessment and comparison of different carbon mitigation projects (e.g., biofuel use, a sequestering plant, an afforestation project). The Lashof accounting methodology is chosen amid other methods of greenhouse gas (GHG) emission characterization for its relative simplicity and capability to characterize all types of carbon mitigation projects. Using the unit of megagram‐year (Mg‐year), which accounts for the mass of GHGs in the atmosphere multiplied by the time it stays there, the methodology calculates the cumulative radiative forcing caused by GHG emission within a predetermined time frame. Basically, the developed framework uses the Mg‐year as a functional unit and isolates impacts related to the climate mitigation function with system expansion. The proposed framework is demonstrated with a case study of tree ethanol pathways (maize, sugarcane, and willow). The study shows that carbon mitigation assessment through life cycle assessment is possible and that it could be a useful tool for decision makers, as it can compare different projects regardless of their original context. The case study reveals that system expansion, as well as each carbon mitigation project's efficiency at reducing carbon emissions, are critical factors that have a significant impact on the results. Also, the framework proves to be useful for treating land‐use change emissions, as they are considered through the functional unit.  相似文献   

11.
The reduced environmental footprint of bicycle sharing systems (BSS) is one of the reasons for their rapid growth in popularity. BSS have evolved technologically, transitioning from smart dock systems to smart bicycle systems, and it is not clear if the increased use of electronics in BSS results in a net environmental benefit. This article provides an evaluation of the impact of incorporating additional technology into BSS and uses that analysis as guidance for future BSS development. By comparing the impacts of a private bicycle, a smart dock BSS, and smart bike BSS using a life cycle assessment (LCA), this work reveals breakeven points and tradeoffs between the technologies. This study is also the first published empirical LCA of a smart bike known to the authors. In the production phase, smart bikes generate approximately three times the amount of greenhouse gas (GHG) emissions compared to the smart dock bikes per kilometer ridden over the lifetime, and when considering the endpoint categories of human health, ecosystem, and resources, smart bikes have approximately 2.7 times the environmental impact. The results suggest that shifting from smart dock to smart bike requires an increase in ridership by a factor of 1.8 to overcome the increased environmental impact based on the GHG emissions. We find that smart docks become preferable at a population density between 1,030 residents/km2 (in a bike friendly city) and 3,100 residents/km2 (in a city that is less likely to bike).  相似文献   

12.
13.
Biomass production on low‐grade land is needed to meet future energy demands and minimize resource conflicts. This, however, requires improvements in plant water‐use efficiency (WUE) that are beyond conventional C3 and C4 dedicated bioenergy crops. Here we present the first global‐scale geographic information system (GIS)‐based productivity model of two highly water‐efficient crassulacean acid metabolism (CAM) candidates: Agave tequilana and Opuntia ficus‐indica. Features of these plants that translate to WUE advantages over C3 and C4 bioenergy crops include nocturnal stomatal opening, rapid rectifier‐like root hydraulic conductivity responses to fluctuating soil water potential and the capacity to buffer against periods of drought. Yield simulations for the year 2070 were performed under the four representative concentration pathway (RCPs) scenarios presented in the IPCC's 5th Assessment Report. Simulations on low‐grade land suggest that O. ficus‐indica alone has the capacity to meet ‘extreme’ bioenergy demand scenarios (>600 EJ yr?1) and is highly resilient to climate change (?1%). Agave tequilana is moderately impacted (?11%). These results are significant because bioenergy demand scenarios >600 EJ yr?1 could be met without significantly increasing conflicts with food production and contributing to deforestation. Both CAM candidates outperformed the C4 bioenergy crop, Panicum virgatum L. (switchgrass) in arid zones in the latitudinal range 30°S–30°N.  相似文献   

14.
Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple‐ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple‐ensemble probabilistic assessment, the median of simulated yield change was ?4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981–2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple‐ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources.  相似文献   

15.
现代农业在带来粮食高产的同时也产生许多生态环境问题,这促使人们再次把目光转向传统农业系统。一些传统农业系统不仅具有突出的经济、社会和文化价值,还具有多种重要的生态功能,如温室气体减排。然而,已有研究缺乏对传统农业系统整个生命周期的固碳减排能力的测算及其环境影响的评价。为此,基于农户调研数据,运用生命周期评价法对青田稻鱼共生系统的碳足迹进行了测算,并与当地水稻单作系统进行比较。研究发现:(1)青田稻鱼共生系统和水稻单作系统碳足迹分别为6266.7 kgCO2-eq/hm2和7520.0 kgCO2-eq/hm2,单位产值碳足迹分别为0.12 kgCO2-eq/元和0.21 kgCO2-eq/元。与水稻单作系统相比,稻鱼共生系统排放的温室气体更少,环境影响更小,生态和经济效益更高。(2)农业生产过程中积累的CH4是碳足迹的最主要来源,农业生产资料投入中的化肥是碳足迹的的第二大来源。农业生产资料投入中的饲料则是稻鱼共生系统碳足迹的另一重要来...  相似文献   

16.
Goal, Scope and Background The goal of this study is to determine the environmental impact of using one cubic metre of water in the Walloon Region. The whole anthropogenic water cycle is analysed, from the pumping stations to the wastewater treatment plants. The functional unit has been defined as one cubic metre of water at the consumer tap. This study was carried out in the context of the EU Water Framework Directive. It is part of a programme called PIRENE launched by the Walloon Region to fulfil the requirements of this Directive. Methods A model of the whole anthropogenic water cycle in the Walloon Region was developed. The model is mainly based on site-specific data given by the companies working in the field of water production and wastewater treatment. It was used to assess the environmental impact from the pumping station to the wastewater treatment plant using the Eco-Indicator 99 methodology. Eco-Indicator 99 has been adapted in order to better take into account environmental impact of acidification and eutrophication. Characterisation factors have been calculated for COD, nitrogen and phosphate emissions. From the reference model, different scenarios have been elaborated. Results and Discussion On the basis of the inventory, the environmental impact of five scenarios has been evaluated. Acidification and eutrophication is the most important impact category. It is mainly caused by the wastewater that is discharged without any treatment, but also by the effluent of the wastewater treatment plant. So, this impact category has the lowest environmental load when the wastewater treatment rate is high. For the other impact categories, the impact generally increases with the wastewater treatment rate. During wastewater treatment, energy and chemicals are indeed consumed to improve the quality of the final outputs, and thus to reduce the environmental impact related to acidification and eutrophication. A comparison between the scenarios has also shown that the building of the sewer network has a significant contribution to the global environmental load and that the stages before the tap contribute less to the environmental impact than the stage after the tap. Conclusions The three stages that contribute significantly to the global environmental load are: water discharge, wastewater treatment operation and, to a lesser extent, the sewer system. The results show that the wastewater treatment rate must be as high as possible, using either collective or individual wastewater treatment plants. Even a small water discharge without any treatment has a significant environmental impact. Operation of the wastewater treatment plants must also be improved to reduce the environmental impact caused by the effluent of the plants. For new wastewater treatment plants, building plants treating nitrogen and phosphorus should be encouraged. A sensitivity analysis was conducted and showed that the results of the study were not very affected by a modification of key parameters. Impact assessment using the CML methodology has confirmed the results obtained with Eco-Indicator 99.  相似文献   

17.
The food and agriculture sectors contribute significantly to climate change, but are also particularly vulnerable to its effects. Industrial ecology has robustly addressed these sectors’ contributions to climate change, but not their vulnerability to climate change. Climate change vulnerability must be addressed through development of climate change adaptation and resiliency strategies. However, there is a fundamental tension between the primary objectives of industrial ecology (efficiency, cyclic flows, and pollution prevention) and what is needed for climate change adaptation and resiliency. We develop here two potential ways through which the field can overcome (or work within) this tension and combine the tools and methods of industrial ecology with the science and process of climate change adaptation. The first layers industrial ecology tools on top of climate change adaptation strategies, allowing one to, for example, compare the environmental impacts of different adaptation strategies. The other embeds climate change adaptation and resiliency within industrial ecology tools, for example, by redefining the functional unit in life cycle assessment (LCA) to include functions of resiliency. In both, industrial ecology plays a somewhat narrow role, informing climate change adaptation and resilience decision‐making by providing quantitative indicators of environmental performance. This role for industrial ecology is important given the significant contributions and potential for mitigation of greenhouse gas emissions from food and agriculture. However, it suggests that industrial ecology's role in climate adaptation will be as an evaluator of adaptation strategies, rather than an originator.  相似文献   

18.
Climate change is predicted to dramatically change hydrologic processes across Alaska, but estimates of how these impacts will influence specific watersheds and aquatic species are lacking. Here, we linked climate, hydrology, and habitat models within a coho salmon (Oncorhynchus kisutch) population model to assess how projected climate change could affect survival at each freshwater life stage and, in turn, production of coho salmon smolts in three subwatersheds of the Chuitna (Chuit) River watershed, Alaska. Based on future climate scenarios and projections from a three‐dimensional hydrology model, we simulated coho smolt production over a 20‐year span at the end of the century (2080–2100). The direction (i.e., positive vs. negative) and magnitude of changes in smolt production varied substantially by climate scenario and subwatershed. Projected smolt production decreased in all three subwatersheds under the minimum air temperature and maximum precipitation scenario due to elevated peak flows and a resulting 98% reduction in egg‐to‐fry survival. In contrast, the maximum air temperature and minimum precipitation scenario led to an increase in smolt production in all three subwatersheds through an increase in fry survival. Other climate change scenarios led to mixed responses, with projected smolt production increasing and decreasing in different subwatersheds. Our analysis highlights the complexity inherent in predicting climate‐change‐related impacts to salmon populations and demonstrates that population effects may depend on interactions between the relative magnitude of hydrologic and thermal changes and their interactions with features of the local habitat.  相似文献   

19.
Bioenergy with carbon capture and storage (BECCS) has been proposed as a potential climate mitigation strategy raising concerns over trade‐offs with existing ecosystem services. We evaluate the feasibility of BECCS in the Upper Missouri River Basin (UMRB), a landscape with diverse land use, ownership, and bioenergy potential. We develop land‐use change scenarios and a switchgrass (Panicum virgatum L.) crop functional type to use in a land‐surface model to simulate second‐generation bioenergy production. By the end of this century, average annual switchgrass production over the UMRB ranges from 60 to 210 Tg dry mass/year and is dependent on the Representative Concentration Pathway for greenhouse gas emissions and on land‐use change assumptions. Under our simple phase‐in assumptions this results in a cumulative total production of 2,000–6,000 Tg C over the study period with the upper estimates only possible in the absence of climate change. Switchgrass yields decreased as average CO2 concentrations and temperatures increased, suggesting the effect of elevated atmospheric CO2 was small because of its C4 photosynthetic pathway. By the end of the 21st century, the potential energy stored annually in harvested switchgrass averaged between 1 and 4 EJ/year assuming perfect conversion efficiency, or an annual electrical generation capacity of 7,000–28,000 MW assuming current bioenergy efficiency rates. Trade‐offs between bioenergy and ecosystem services were identified, including cumulative direct losses of 1,000–2,600 Tg C stored in natural ecosystems from land‐use change by 2090. Total cumulative losses of ecosystem carbon stocks were higher than the potential ~300 Tg C in fossil fuel emissions from the single largest power plant in the region over the same time period, and equivalent to potential carbon removal from the atmosphere from using biofuels grown in the same region. Numerous trade‐offs from BECCS expansion in the UMRB must be balanced against the potential benefits of a carbon‐negative energy system.  相似文献   

20.
The built environment is the largest single emitter of CO2 and an important consumer of energy. Much research has gone into the improved efficiency of building operation and construction products. Life Cycle Assessment (LCA) is commonly used to assess existing buildings or building products. Classic LCA, however, is not suited for evaluating the environmental performance of developing technologies. A new approach, anticipatory LCA (a‐LCA), promises various advantages and can be used as a design constraint during the product development stage. It helps overcome four challenges: (i) data availability, (ii) stakeholder inclusion, (iii) risk assessment, and (iv) multi‐criteria problems. This article's contribution to the line of research is twofold: first, it adapts the a‐LCA approach for construction‐specific purposes in theoretical terms for the four challenges. Second, it applies the method to an innovative prefabricated modular envelope system, the CleanTechBlock (CTB), focusing on challenge (i). Thirty‐six CTB designs are tested and compared to conventional walls. Inclusion of technology foresight is achieved through structured scenario analysis. Moreover, challenge (iv) is tackled through the analysis of different environmental impact categories, transport‐related impacts, and thickness of the wall assemblies of the CTB. The case study results show that optimized material choice and product design is needed to reach the lowest environmental impact. Methodological findings highlight the importance of context‐specific solutions and the need for benchmarking new products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号