首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2D nanostructured materials have shown great application prospects in energy conversion, owing to their unique structural features and fascinating physicochemical properties. Developing efficient approaches for the synthesis of well‐defined 2D nanostructured materials with controllable composition and morphology is critical. The emerging concept, confined synthesis, has been regarded as a promising strategy to design and synthesize novel 2D nanostructured materials. This review mainly summarizes the recent advances in confined synthesis of 2D nanostructured materials by using layered materials as host matrices (also denoted as “nanoreactors”). By virtue of the space‐ and surface‐confinement effects of these layered hosts, various well‐organized 2D nanostructured materials, including 2D metals, 2D metal compounds, 2D carbon materials, 2D polymers, 2D metal‐organic frameworks (MOFs) and covalent‐organic frameworks (COFs), as well as 2D carbon nitrides are successfully synthesized. The wide employment of these 2D materials in electrocatalytic applications (e.g., electrochemical oxygen/hydrogen evolution reactions, small molecule oxidation, and oxygen reduction reaction) is presented and discussed. In the final section, challenges and prospects in 2D confined synthesis from the viewpoint of designing new materials and exploring practical applications are commented, which would push this fast‐evolving field a step further toward greater success in both fundamental studies and ultimate industrialization.  相似文献   

2.
Rational design of electrocatalysts toward efficient CO2 electroreduction has the potential to reduce carbon emission and produce value‐added chemicals. In this work, a strategy of constructing 2D confined‐space as molecular reactors for enhanced electrocatalytic CO2 reduction selectivity is demonstrated. Highly ordered 2D nanosheet lamella assemblies are achieved via weak molecular interaction of atomically thin titania nanosheets, a variety of cationic surfactants, and SnO2 nanoparticles. The interlayer spacings can be tuned from 0.9 to 3.0 nm by using different surfactant molecules. These 2D assemblies of confined‐space catalysts exhibit a strong size dependence of CO2 electroreduction selectivity, with a peak Faradaic efficiency of 73% for formate production and excellent electrochemical stability at an optimal interspacing of ≈2.0 nm. This work suggests great potential for constructing new molecular‐size reactors, for highly selective electrocatalytic CO2 reduction.  相似文献   

3.
Wang L  Yi C  Zou H  Gan H  Xu J  Xu W 《Journal of molecular modeling》2011,17(11):2751-2758
The dissociation and isomerization reactions of methyl-nitramine(MNA) confined inside armchair CNT(5,5) single-walled carbon nanotube were investigated by using the ONIOM (B3LYP/6-311++G**:UFF) method. The results showed that some geometries of the confined MNA were modified by the CNT(5,5) in comparison with the structure of the isolated MNA. By analyzing the relevant structures and energies involved in the dissociation and isomerization reactions, we found that the transition state structures of the isomerization reactions to form CH3NHONO (R1) and CH3NNOOH (R2) were modified by the confinement of CNT(5,5). However, this confinement does not evidently affect the transition state structure of the HONO elimination reaction (R3). In addition, no transition state was found for the N-N bond dissociation (R4) of the isolated MNA, but this dissociation process occurred via a transition state for the confined MNA. When MNA was confined inside CNT(5,5), the activation energies of R1, R2, and R4 were decreased obviously but the energy barrier of R3 was increased slightly. The order of activation energy for these four initial reactions was also changed by the confinement of CNT(5,5). Furthermore, it was found that the relative energies of the intermediates formed by the isomerization and dissociation of MNA were also modified by the confinement of CNT(5,5). These intermediates become more stable in the confined case than in the isolated case. It was concluded that the initial reactions of MNA could be modified evdiently by confinement within a carbon nanotube.  相似文献   

4.
Composite materials based on graphene and other 2D materials are of considerable interest in the fields of catalysis, electronics, and energy conversion and storage because of the unique structural features and electronic properties of each component and the synergetic effects brought about by the compositing. Approaches to the mass production of 2D materials and their composites in a facile and affordable way are urgently needed to enable their implementation in practical applications. Here a novel electrochemical exfoliation approach to prepare 2D composites is proposed, which combines simultaneous anodic exfoliation of graphite and cathodic exfoliation of other 2D materials (namely MoS2, MnO2, and graphitic carbon nitride). The synthesis is carried out in a single‐compartment electrochemical cell to in situ produce functional 2D composite materials. Applications of the as‐prepared 2D composites are demonstrated as (i) effective hydrogen evolution catalysts and (ii) supercapacitor electrode materials. The method enables the compositing of semiconductive, or even insulating, 2D materials with conductive graphene in an easy, cheap, ecofriendly, yet efficient way, liberating the intrinsic functions of 2D materials, which are usually hindered by their poor conductivity. The method is believed to be widely applicable to the family of 2D materials.  相似文献   

5.
Mimicking photosynthesis in generating chemical fuels from sunlight is a promising strategy to alleviate society's demand for fossil fuels. However, this approach involves a number of challenges that must be overcome before this concept can emerge as a viable solution to society's energy demand. Particularly in artificial photosynthesis, the catalytic chemistry that converts energy in the form of electricity into carbon‐based fuels and chemicals has yet to be developed. Here, we describe the foundational work and future prospects of an emerging and promising class of materials: metal‐ and covalent‐organic frameworks (MOFs and COFs). Within this context, these porous and tuneable framework materials have achieved initial success in converting abundant feedstocks (H2O and CO2) into chemicals and fuels. In this review, we first highlight key achievements in this direction. We then follow with a perspective on precisely how MOFs and COFs can perform in ways not possible with conventional molecular or heterogeneous catalysts. We conclude with a view on how spectroscopically probing MOF and COF catalysis can be used to elucidate reaction mechanisms and material dynamics throughout the course of reaction.  相似文献   

6.
The low hydrogen adsorption free energy and strong acid/alkaline resistance of layered MoS2 render it an excellent pH‐universal electrocatalyst for hydrogen evolution reaction (HER). However, the catalytic activity is dominantly suppressed by its limited active‐edge‐site density. Herein, a new strategy is reported for making a class of strongly coupled MoS2 nanosheet–carbon macroporous hybrid catalysts with engineered unsaturated sulfur edges for boosting HER catalysis by controlling the precursor decomposition and subsequent sodiation/desodiation. Both surface chemical state analysis and first‐principles calculations verify that the resultant catalysts exhibit a desirable valence‐electron state with high exposure of unsaturated sulfur edges and an optimized hydrogen adsorption free energy, significantly improving the intrinsic HER catalytic activity. Such an electrocatalyst exhibits superior and stable catalytic activity toward HER with small overpotentials of 136 mV in 0.5 m H2SO4 and 155 mV in 1 m KOH at 10 mA cm?2, which is the best report for MoS2–C hybrid electrocatalysts to date. This work paves a new avenue to improve the intrinsic catalytic activity of 2D materials for hydrogen generation.  相似文献   

7.
Dendrimers are well-defined hyperbranched macromolecules with characteristic globular structures for the larger systems. The recent impressive strides in synthetic procedures increased the accessibility of functionalized dendrimers at a practicable scale, resulting in a rapid development of dendrimer chemistry. Dendrimers have inspired many chemists to develop new materials and several applications have been explored, catalysis being one of them. The position of the catalytic site(s) as well as the spatial separation of the catalysts within the dendritic framework is of crucial importance. Dendrimers that are functionalized with transition metals in the core can potentially mimic properties of enzymes, their efficient natural counterparts, whereas the surface-functionalized systems have been proposed to fill the gap between homogeneous and heterogeneous catalysis. We prepared both core- and periphery-functionalized dendritic catalysts that are sufficiently large to enable separation by modern nanofiltration techniques. Here we review our recent findings using these promising novel transition metal-functionalized dendrimers as catalysts in several reactions. We will discuss some of the consequences of the architecturally different systems that have been studied and will elaborate on a novel non-covalent strategy of dendrimer functionalization.  相似文献   

8.
An innovative use of a thermoelectric material (BiCuSeO) as a support and promoter of catalysis for CO2 hydrogenation is reported here. It is proposed that the capability of thermoelectric materials to shift the Fermi level and work function of a catalyst lead to an exponential increase of catalytic activity for catalyst particles deposited on its surface. Experimental results show that the CO2 conversion and CO selectivity are increased significantly by a thermoelectric Seebeck voltage. This suggests that the thermoelectric effect can not only increase the reaction rate but also change chemical equilibrium, which leads to the change of thermodynamic equilibrium for the conversion of CO2 in its hydrogenation reactions. It is also shown that this thermoelectric promotion of catalysis enables BiCuSeO oxide itself to have a high catalytic activity for CO2 hydrogenation. The generic nature of the mechanism suggests the possibility that many catalytic chemical reactions can be tuned in situ to achieve much higher reaction rates, or at lower temperatures, or have better desired selectivity through changing the backside temperature of the thermoelectric support.  相似文献   

9.
The ability to deposit conformal catalytic thin films enables opportunities to achieve complex nanostructured designs for catalysis. Atomic layer deposition (ALD) is capable of creating conformal thin films over complex substrates. Here, ALD‐MnOx on glassy carbon is investigated as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest due to their many applications in alternative energy technologies. The films are characterized by X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, ellipsometry, and cyclic voltammetry. The as‐deposited films consist of Mn(II)O, which is shown to be a poor catalyst for the ORR, but highly active for the OER. By controllably annealing the samples, Mn2O3 catalysts with good activity for both the ORR and OER are synthesized. Hypotheses are presented to explain the large difference in the activity between the MnO and Mn2O3 catalysts for the ORR, but similar activity for the OER, including the effects of surface oxidation under experimental conditions. These catalysts synthesized though ALD compare favorably to the best MnOx catalysts in the literature, demonstrating a viable way to produce highly active, conformal thin films from earth‐abundant materials for the ORR and the OER.  相似文献   

10.
Recently, the direct substitution of allylic, benzylic, and tertiary alcohols has been achieved via SN1‐type reactions with catalytic amounts of Brønsted or Lewis acids. When a new stereogenic center is formed most of these transformations produce the desired product as a racemate, as these reactions proceed through carbenium ions. The arsenal of activation modes available in organocatalysis can be used to set up suitable reaction conditions in which chiral nucleophiles (enamine catalysis) or chiral electrophiles (iminium catalysis, chiral counterion catalysis) can easily be generated. Recently, we have used stabilized carbenium ions, directly available or obtained from the corresponding alcohols, in new organocatalytic stereoselective SN1‐type reactions. The commercially available carbenium ion benzodithiolylium tetrafluoroborate 1 can be used for the straightforward organocatalytic stereoselective alkylation of aldehydes. In this account we will illustrate the application of this methodology in the total synthesis of natural products and the preparation of valuable starting materials. Chirality 26:607–613, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Single atom catalysts (SACs) that integrate the merits of homogeneous and heterogeneous catalysts have been attracting considerable attention in recent years. The individual metal atoms of SACs can be stabilized on supports through various unsaturated chemical sites or space confinement for achieving the maximized atom utilization efficiency. Aside from the development of strategies for preparing high loading and high purity SACs, another key challenge in this field is precisely manipulating the geometric and electronic structure of catalytically active single metal sites, thus rendering the catalysts exceptionally reactive, selective, and stabile compared to their bulk counterparts. This review summarizes recent advancements in SACs for heterogeneous catalysis from the perspective of local structural regulation and the synergistic coupling effect between metal species and supports. Special emphasis is placed on the elucidation of the catalytic structure‐performance relationship in terms of coordination environment, valence state and metal‐support interactions by advanced characterization and theoretical studies. Select in situ or operando characterization techniques for tracking the SACs’ structure evolution under realistic conditions are highlighted. Finally, the challenges and opportunities are discussed to offer insight into the rational design of more intriguing SACs with high activity and distinct chemoselectivity.  相似文献   

12.
Phosphine and amine functionalized mesoporous silica materials were metallated with Rh(CO)2(i-Pr2NH)Cl or Rh2(CO)4Cl2, respectively, to yield catalysts containing the Rh(PPh2R)2(CO)Cl or Rh(CO)2(NH2R)Cl, where R is a propyl chain bonded to the silica surface, reactive centers. In order to ascertain the effect of pore size on rates of hydroformylation catalysis both 35 and 45 Å pore size materials were used. Using the hydroformylation of octene as a reference reaction, the phosphine based, 45 Å catalysts were 1.5-1.3 times faster than the amine based, 45 Å catalysts, and the 45 Å materials were 2.6-2.1 times faster than the 35 Å materials. The orientation of the catalyst relative to the functionalized surface, and the steric environment around the catalyst active site appear to be significant in determining rate of reaction. The ability of the surface bound phosphine catalysts to affect hydroformylation was strongly influenced by the steric constraints of the substrate. Terminal alkenes were readily hydroformylated and norbornene was slowly hydroformylated, but pinene, trans-cyclododecene, cyclohexene and cholesterol were nonreactive to the catalytic center.  相似文献   

13.
Ammonia and its derived products are vital to modern societies. Artificial nitrogen fixation to ammonia via the Haber–Bosch process has been employed industrially for over 100 years. However, the Haber–Bosch process is energy intensive and not sustainable in its current form as it uses hydrogen sourced from steam methane reforming to reduce N2. The roadmap to sustainable NH3 production demands the discovery of novel approaches for nitrogen fixation under near ambient conditions that preferably use water as the reducing agent. Over the last decade, great efforts have been made to develop catalysts capable of N2 fixation under mild reaction conditions, using strategies such as low temperature thermal catalysis, nonthermal plasma catalysis, enzymatic catalysis, photocatalysis, and electrocatalysis to generate ammonia and other valuable nitrogen‐containing chemicals. In parallel with catalytic performance studies, researchers have also placed emphasis on the mechanistic understanding of natural and artificial nitrogen fixation catalysts. In this work, the various routes now being explored for nitrogen fixation are summarized. The different dinitrogen activation and hydrogenation pathways are described, whilst describing key advances made to date on the journey toward near ambient ammonia synthesis. Key obstacles that need to be overcome to attract industry interest are also discussed.  相似文献   

14.
There is an escalating interest of using double stranded DNA molecules as a chiral scaffold to construct metal‐biomacromolecule hybrid catalysts for asymmetric synthesis. Several recent studies also evaluated the use of G‐quadruplex DNA‐based catalysts for asymmetric Diels‐Alder and Friedel‐Crafts reactions. However, there is still a lack of understanding of how different oligonucleotides, salts (such as NaCl and KCl), metal ligands and co‐solvents affect the catalytic performance of quadruplex DNA‐based hybrid catalysts. In this study, we aim to systematically evaluate these key factors in asymmetric Michael addition reactions, and to examine the conformational and molecular changes of DNA by circular dichroism (CD) spectroscopy and gel electrophoresis. We achieved up to 95% yield and 50% enantiomeric excess (ee) when the reaction of 2‐acylimidazole 1a and dimethylmalonate was catalyzed by 5′‐G3(TTAG3)3?3′ (G4DNA1) in 20 mM MOPS (pH 6.5) containing 50 mM KCl and 40 µM [Cu(dmbipy)(NO3)2], and G4DNA1 was pre‐sonicated in ice bath for 10 min prior to the reaction. G‐quadruplex‐based hybrid catalysts provide a new tool for asymmetric catalysis, but future mechanistic studies should be sought to further improve the catalytic efficiency. The current work presents a systematic study of asymmetric Michael addition catalyzed by G‐quadruplex catalysts constructed via non‐covalent complexing, and an intriguing finding of the effect of pre‐sonication on catalytic efficiency. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:891–898, 2016  相似文献   

15.
As the lightest member of transition metal dichalcogenides, 2D titanium disulfide (2D TiS2) nanosheets are attractive for energy storage and conversion. However, reliable and controllable synthesis of single‐ to few‐layered TiS2 nanosheets is challenging due to the strong tendency of stacking and oxidation of ultrathin TiS2 nanosheets. This study reports for the first time the successful conversion of Ti3C2Tx MXene to sandwich‐like ultrathin TiS2 nanosheets confined by N, S co‐doped porous carbon (TiS2@NSC) via an in situ polydopamine‐assisted sulfuration process. When used as a sulfur host in lithium–sulfur batteries, TiS2@NSC shows both high trapping capability for lithium polysulfides (LiPSs), and remarkable electrocatalytic activity for LiPSs reduction and lithium sulfide oxidation. A freestanding sulfur cathode integrating TiS2@NSC with cotton‐derived carbon fibers delivers a high areal capacity of 5.9 mAh cm?2 after 100 cycles at 0.1 C with a low electrolyte/sulfur ratio and a high sulfur loading of 7.7 mg cm?2, placing TiS2@NSC one of the best LiPSs adsorbents and sulfur conversion catalysts reported to date. The developed nanospace‐confined strategy will shed light on the rational design and structural engineering of metal sulfides based nanoarchitectures for diverse applications.  相似文献   

16.
Metabolic networks have been an interesting starting point not only for the design of synthetic routes in a similar sequence of reactions, e.g., in biomimetic syntheses, but also for assembling a number of biocatalytic steps by preparing the required enzymes and auxiliary reagents. Retrosynthetic analysis involving multiple biocatalytic reactions steps therefore needs to consider the practically realized biocatalytic single steps. The opportunities for route selection are enlarged if novel synthetic reactions connecting easily available starting materials and products are found, and/or both biocatalytic and classical reactions of organic chemistry are utilized. Tools and ingredients for biocatalytic synthesis are of special interest for reactions difficult to achieve by classical organic synthesis. Densely and differentially functionalized small molecules do not allow much space for protecting or activating groups. Biocatalytic reactions have therefore performed well for a number of useful metabolites in enantiopure form to achieve full functionality. Although many well-known metabolites from classical biochemistry have only been prepared in racemic form, it is of fundamental interest to have these available in enantiomerically pure form. Biocatalytic reactions with nature's privileged chiral catalysts appear to be a promising synthetic strategy towards these metabolites, especially when sensitive or stable-isotope-labeled metabolites are to be prepared. The main applications for these metabolites are as references materials in metabolomics, as enzyme substrates for the characterization of metabolic enzyme activities and as potential pharmaceuticals in biomedical research. The use of stable-isotope-labeled metabolites can thereby simplify in vivo applications and metabolic flux analyses.  相似文献   

17.
Confinement effects can lead to drastic changes in the structural and dynamical properties of water molecules. In this work, we have performed classical molecular dynamics simulations of endohedral fullerenes of type (H2O)n@Cm (n = 1, 12, 21, 62, 108 and m = 60, 180, 240, 500 and 720) to explore the effects of spherical confinement on water properties. It is shown that these confined water molecules can form distinct solvation pattern depending upon the available space inside the fullerene cavity. For the systems with smaller diameter, cage-like structure is predominant whereas bulk-like structure is observed for larger fullerenes. The orientational relaxation of these confined water molecules showed slower relaxation as the cavity diameter increases except for the (H2O)21@C240. In this case, stable cage-like structure hinders the overall dynamics of the trapped water molecules. Finally, we have calculated the hydrogen bond lifetimes from the hydrogen bond time correlation functions and compared with that of bulk water.  相似文献   

18.
Abstract

In recent years, Janus amphiphilic nanotubes with complex surfaces have been synthesized. However, the self-assembly behaviour of surfactant solutions confined in a Janus amphiphilic nanotube has not been investigated so far. We performed molecular simulations to investigate the morphologies and phase diagrams of a surfactant confined in Janus amphiphilic nanotube consisting of both hydrophobic and hydrophilic surfaces. We derived a phase diagram of the representative snapshots of equilibrium morphologies. Morphologies that were not observed in the bulk eventuated in confined systems. Moreover, the self-assembled structures were found to be dependent on the spatial confinement. Furthermore, the self-assembled structures confined in hydroneutral and Janus amphiphilic nanotubes were compared. The results suggested that the self-assembled structures confined in the Janus amphiphilic nanotube resembled that confined in the hydroneutral nanotube owing to a strong confinement effect. Further developments in controlling the morphologies and self-assemblies will greatly advance their applications of these materials in nanofluidic devices, or for nanopatterning.  相似文献   

19.
Hydrogen (H2) has been deemed as the most promising and valuable alternative to nonrenewable fossil fuels. Photocatalytic and electrocatalytic water splitting are considered to be the most efficient and environmentally friendly approaches for the sustainable H2 evolution reaction (HER). Graphene with a 3D framework has been utilized for the HER due to its unique structure and properties, including its hierarchical network, large specific surface area, diverse pore distribution, outstanding light absorption ability, and excellent electrical conductivity. The large specific surface area and hierarchically porous structure of 3D graphene can not only maximize the exposure of active sites but also promote electron transfer and gas product diffusion. In addition, the free‐standing 3D graphene monolith is easily recycled compared with powder phase support, which can prevent the loss of active catalysts. By making full use of the aforementioned merits, 3D graphene‐based composite materials show great promise as high‐performance catalysts toward photocatalytic and electrocatalytic HER. In this review, recent advances in fabricating 3D graphene‐based composite materials and their applications in both photocatalytic and electrocatalytic HER are summarized and discussed. Furthermore, the current challenges and future vision associated with the design, fabrication, and integration of 3D graphene‐based composite materials toward HER are put forward.  相似文献   

20.
《Biophysical journal》2020,118(7):1709-1720
Biological tissues contain micrometer-scale gaps and pores, including those found within extracellular matrix fiber networks, between tightly packed cells, and between blood vessels or nerve bundles and their associated basement membranes. These spaces restrict cell motion to a single-spatial dimension (1D), a feature that is not captured in traditional in vitro cell migration assays performed on flat, unconfined two-dimensional (2D) substrates. Mechanical confinement can variably influence cell migration behaviors, and it is presently unclear whether the mechanisms used for migration in 2D unconfined environments are relevant in 1D confined environments. Here, we assessed whether a cell migration simulator and associated parameters previously measured for cells on 2D unconfined compliant hydrogels could predict 1D confined cell migration in microfluidic channels. We manufactured microfluidic devices with narrow channels (60-μm2 rectangular cross-sectional area) and tracked human glioma cells that spontaneously migrated within channels. Cell velocities (vexp = 0.51 ± 0.02 μm min−1) were comparable to brain tumor expansion rates measured in the clinic. Using motor-clutch model parameters estimated from cells on unconfined 2D planar hydrogel substrates, simulations predicted similar migration velocities (vsim = 0.37 ± 0.04 μm min−1) and also predicted the effects of drugs targeting the motor-clutch system or cytoskeletal assembly. These results are consistent with glioma cells utilizing a motor-clutch system to migrate in confined environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号