首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Abstract Numerous studies indicate that target gene silencing by RNA interference (RNAi) could lead to insect death. This phenomenon has been considered as a potential strategy for insect pest control, and it is termed RNAi‐mediated crop protection. However, there are many limitations using RNAi‐based technology for pest control, with the effectiveness target gene selection and reliable double‐strand RNA (dsRNA) delivery being two of the major challenges. With respect to target gene selection, at present, the use of homologous genes and genome‐scale high‐throughput screening are the main strategies adopted by researchers. Once the target gene is identified, dsRNA can be delivered by micro‐injection or by feeding as a dietary component. However, micro‐injection, which is the most common method, can only be used in laboratory experiments. Expression of dsRNAs directed against insect genes in transgenic plants and spraying dsRNA reagents have been shown to induce RNAi effects on target insects. Hence, RNAi‐mediated crop protection has been considered as a potential new‐generation technology for pest control, or as a complementary method of existing pest control strategies; however, further development to improve the efficacy of protection and range of species affected is necessary. In this review, we have summarized current research on RNAi‐based technology for pest insect management. Current progress has proven that RNAi technology has the potential to be a tool for designing a new generation of insect control measures. To accelerate its practical application in crop protection, further study on dsRNA uptake mechanisms based on the knowledge of insect physiology and biochemistry is needed.  相似文献   

3.
4.
RNA interference in infectious tropical diseases   总被引:2,自引:0,他引:2  
Introduction of double-stranded RNA (dsRNA) into some cells or organisms results in degradation of its homologous mRNA, a process called RNA interference (RNAi). The dsRNAs are processed into short interfering RNAs (siRNAs) that subsequently bind to the RNA-induced silencing complex (RISC), causing degradation of target mRNAs. Because of this sequence-specific ability to silence target genes, RNAi has been extensively used to study gene functions and has the potential to control disease pathogens or vectors. With this promise of RNAi to control pathogens and vectors, this paper reviews the current status of RNAi in protozoans, animal parasitic helminths and disease-transmitting vectors, such as insects. Many pathogens and vectors cause severe parasitic diseases in tropical regions and it is difficult to control once the host has been invaded. Intracellularly, RNAi can be highly effective in impeding parasitic development and proliferation within the host. To fully realize its potential as a means to control tropical diseases, appropriate delivery methods for RNAi should be developed, and possible off-target effects should be minimized for specific gene suppression. RNAi can also be utilized to reduce vector competence to interfere with disease transmission, as genes critical for pathogenesis of tropical diseases are knockdowned via RNAi.  相似文献   

5.
6.
7.
8.
灰飞虱海藻糖酶基因的克隆及RNA干扰效应   总被引:7,自引:0,他引:7  
张倩  鲁鼎浩  蒲建  吴敏  韩召军 《昆虫学报》2012,55(8):911-920
RNA干扰(RNAi)不但可以用于研究基因的功能, 还可以通过沉默靶标基因干扰特定的生命过程。因此, 通过深入研究, 发掘高效专一性靶基因和RNAi技术, 有可能开辟针对性的害虫RNAi防控新途径。本研究通过灰飞虱Laodelphax striatellus转录组数据分析并结合RACE技术, 克隆了灰飞虱两种海藻糖酶的全长基因, 分别命名为LSTre-1和LSTre-2, 其GenBank登录号分别为JQ027050和JQ027051。它们均具有海藻糖酶基因的典型特征, 与已报道的其他昆虫的海藻糖酶基因具有很高的相似性, 并表现出一定的虫种亲缘关系。其中LSTre-1为水溶性海藻糖酶基因, 全长2 042 bp, 开放阅读框编码602个氨基酸, 前端有25个氨基酸的信号肽, 但无跨膜结构域; LSTre-2为膜结合型海藻糖酶基因, 全长2 619 bp, 开放阅读框编码618个氨基酸, 前端有26个氨基酸的信号肽, 有2个疏水性跨膜结构域。利用喂食法研究2种海藻糖酶基因dsRNA对灰飞虱的致死效应, 发现靶向水溶性酶基因的干扰效应略高于靶向膜结合型的, 但两种海藻糖酶基因的dsRNA都可以显著抑制灰飞虱海藻糖酶基因的表达, 降低其活力, 还能显著抑制试虫的生长, 大幅增加试虫死亡率。 结果提示, 通过适宜途径干扰海藻糖酶基因可以开发防治灰飞虱的新途径。  相似文献   

9.
10.
siRNA-mediated gene silencing in vitro and in vivo   总被引:74,自引:0,他引:74  
RNA interference is now established as an important biological strategy for gene silencing, but its application to mammalian cells has been limited by nonspecific inhibitory effects of long dsRNA on translation. Here, we describe a viral-mediated delivery mechanism that results in specific silencing of targeted genes through expression of small interfering RNA (siRNA). We establish proof of principle by markedly diminishing expression of exogenous and endogenous genes in vitro and in vivo in brain and liver, and further apply this strategy to a model system of a major class of neurodegenerative disorders, the polyglutamine diseases, to show reduced polyglutamine aggregation in cells. This viral-mediated strategy should prove generally useful in reducing expression of target genes to model biological processes or to provide therapy for dominant human diseases.  相似文献   

11.
Delivery of dsRNA for RNAi in insects: an overview and future directions   总被引:2,自引:0,他引:2  
Abstract RNA interference (RNAi) refers to the process of exogenous double‐stranded RNA (dsRNA) silencing the complementary endogenous messenger RNA. RNAi has been widely used in entomological research for functional genomics in a variety of insects and its potential for RNAi‐based pest control has been increasingly emphasized mainly because of its high specificity. This review focuses on the approaches of introducing dsRNA into insect cells or insect bodies to induce effective RNAi. The three most common delivery methods, namely, microinjection, ingestion, and soaking, are illustrated in details and their advantages and limitations are summarized for purpose of feasible RNAi research. In this review, we also briefly introduce the two possible dsRNA uptake machineries, other dsRNA delivery methods and the history of RNAi in entomology. Factors that influence the specificity and efficiency of RNAi such as transfection reagents, selection of dsRNA region, length, and stability of dsRNA in RNAi research are discussed for further studies.  相似文献   

12.
Environmental RNA interference   总被引:5,自引:0,他引:5  
The discovery of RNA interference (RNAi), the process of sequence-specific gene silencing initiated by double-stranded RNA (dsRNA), has broadened our understanding of gene regulation and has revolutionized methods for genetic analysis. A remarkable property of RNAi in the nematode Caenorhabditis elegans and in some other multicellular organisms is its systemic nature: silencing signals can cross cellular boundaries and spread between cells and tissues. Furthermore, C. elegans and some other organisms can also perform environmental RNAi: sequence-specific gene silencing in response to environmentally encountered dsRNA. This phenomenon has facilitated significant technological advances in diverse fields including functional genomics and agricultural pest control. Here, we describe the characterization and current understanding of environmental RNAi and discuss its potential applications.  相似文献   

13.
RNA interference (RNAi) designates the multistep process by which double-stranded RNA induces the silencing of homologous endogenous genes. Some aspects of RNAi appear to be conserved throughout evolution, including the processing of trigger dsRNAs into small 21-23-bp siRNAs and their use to guide the degradation of complementary mRNAs. Two remarkable features of RNAi were uncovered in plants and Caenorhabditid elegans. First, RNA-dependent RNA polymerase activities allow the synthesis of siRNA complementary to sequences upstream of or downstream from the initial trigger region in the target mRNA, leading to a transitive RNAi with sequences that had not been initially targeted. Secondly, systemic RNAi may cause the targeting of gene silencing in one tissue to spread to other tissues. Using transgenes expressing dsRNA, we investigated whether transitive and systemic RNAi occur in DROSOPHILA: DsRNA-producing transgenes targeted RNAi to specific regions of alternative mRNA species of one gene without transitive effect directed to sequences downstream from or upstream of the initial trigger region. Moreover, specific expression of a dsRNA, using either cell-specific GAL4 drivers or random clonal activation of a GAL4 driver, mediated a cell-autonomous RNAi. Together, our results provide evidence that transitive and systemic aspects of RNAi are not conserved in Drosophila and demonstrate that dsRNA-producing transgenes allow powerful reverse genetic approaches to be conducted in this model organism, by knocking down gene functions at the resolution of a single-cell type and of a single isoform.  相似文献   

14.
RNA interference (RNAi) represents a breakthrough technology for conducting functional genomics research in non-model organisms and for the highly targeted control of insect pests. This study investigated RNAi via voluntary feeding in the economically important pest termite, Reticulitermes flavipes. We used a high-dose double-stranded (ds) RNA feeding approach to silence two termite genes: one encoding an endogenous digestive cellulase enzyme and the other a caste-regulatory hexamerin storage protein. Contrary to results from previous low-dose studies that examined injection-based RNAi, high-dose silencing of either gene through dsRNA feeding led to significantly reduced group fitness and mortality. Hexamerin silencing in combination with ectopic juvenile hormone treatments additionally led to lethal molting impacts and increased differentiation of presoldier caste phenotypes (a phenotype that is not capable of feeding). These results provide the first examples of insecticidal effects from dsRNA feeding in a termite. Additionally, these results validate a high-throughput bioassay approach for use in (i) termite functional genomics research, and (ii) characterizing target sites of conventional and novel RNAi-based termiticides.  相似文献   

15.
RNA interference (RNAi), first described for Caenorhabditis elegans , has emerged as a powerful gene silencing tool for investigating gene function in a range of organisms. Recent studies have described its application to plant parasitic nematodes. Genes expressed in a range of cell types are silenced when preparasitic juvenile nematodes take up double-stranded (ds)RNA that elicits a systemic RNAi response. Important developments over the last year have shown that in planta expression of a dsRNA targeting a nematode gene can successfully induce silencing in parasitizing nematodes. When the targeted gene has an essential function, a resistance effect is observed paving the way for the potential use of RNAi technology to control plant parasitic nematodes.  相似文献   

16.
Epigenetic information can be inherited over multiple generations, which is termed as transgenerational epigenetic inheritance (TEI). Although the mechanism(s) of TEI remains poorly understood, noncoding RNAs have been demonstrated to play important roles in TEI. In many eukaryotes, double‐stranded RNA (dsRNA) triggers the silencing of cellular nucleic acids that exhibit sequence homology to the dsRNA via a process termed RNA interference (RNAi). In Caenorhabditis elegans, dsRNA‐directed gene silencing is heritable and can persist for a number of generations after its initial induction. During the process, small RNAs and the RNAi machinery mediate the initiation, transmission and re‐establishment of the gene silencing state. In this review, we summarise our current understanding of the underlying mechanism(s) of transgenerational inheritance of RNAi in C. elegans and propose that multiple RNAi machineries may act cooperatively to promote TEI.  相似文献   

17.
Drosophila melanogaster has been a premier genetic model system for nearly 100 years, yet lacks a simple method to disrupt gene expression. Here, we show genomic cDNA fusions predicted to form double-stranded RNA (dsRNA) following splicing, effectively silencing expression of target genes in adult transgenic animals. We targeted three Drosophila genes: lush, white, and dGq(alpha). In each case, target gene expression is dramatically reduced, and the white RNAi phenotype is indistinguishable from a deletion mutant. This technique efficiently targets genes expressed in neurons, a tissue refractory to RNAi in C. elegans. These results demonstrate a simple strategy to knock out gene function in specific cells in living adult Drosophila that can be applied to define the biological function of hundreds of orphan genes and open reading frames.  相似文献   

18.
RNA干扰作用(RNAi)研究进展   总被引:25,自引:4,他引:21  
RNA干扰作用 (RNAi)是生物界一种古老而且进化上高度保守的现象 ,是基因转录后沉默作用 (PTGS)的重要机制之一 .RNAi主要通过dsRNA被核酸酶切割成 2 1~ 2 5nt的干扰性小RNA即siRNA ,由siRNA介导识别并靶向切割同源性靶mRNA分子而实现 .RNAi要有多种蛋白因子以及ATP参与 ,而且具有生物催化反应特征 .RNAi是新发现的一种通过dsRNA介导的特异性高效抑制基因表达途径 ,在后基因组时代的基因功能研究和药物开发中具有广阔应用前景  相似文献   

19.
The efficiency of RNA interference (RNAi) delivery to L1 through L3 stage worms of the sheep parasitic nematode Trichostrongylus colubriformis was investigated using several techniques. These were: (i) feeding of Escherichia coli expressing double stranded RNA (dsRNA); (ii) soaking of short interfering (synthetic) RNA oligonucleotides (siRNA) or in vitro transcribed dsRNA molecules; and (iii) electroporation of siRNA or in vitro transcribed dsRNA molecules. Ubiquitin and tropomyosin were used as a target gene because they are well conserved genes whose DNA sequences are available for several nematode parasite species. Ubiquitin siRNA or dsRNA delivered by soaking or electroporation inhibited development in T. colubriformis but with feeding as a delivery method, RNAi of ubiquitin was not successful. Feeding was, however, successful with tropomyosin as a target, suggesting that mode of delivery is an important parameter of RNAi. Electroporation is a particularly efficient means of inducing RNA in nematodes with either short dsRNA oligonucleotides or with long in vitro transcribed dsRNA molecules. These methods permit routine delivery of dsRNA for RNAi in T. colubriformis larval stage parasites and should be applicable to moderate to high-throughput screening.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号