首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predator–prey interactions may be responsible for enormous morphological diversity in prey species. We performed predation experiments with morphological manipulations (ablation) to investigate the defensive function of dorsal spines and explanate margins in Cassidinae leaf beetles against three types of predators: assassin bugs (stinger), crab spiders (biter), and tree frogs (swallower). There was mixed support for the importance of primary defense mechanisms (i.e., preventing detection or identification). Intact spined prey possessing dorsal spines were more likely to be attacked by assassin bugs and tree frogs, while intact armored prey possessing explanate margins were likely to avoid attack by assassin bugs. In support of the secondary defense mechanisms (i.e., preventing subjugation), dorsal spines had a significant physical defensive function against tree frogs, and explanate margins protected against assassin bugs and crab spiders. Our results suggest a trade‐off between primary and secondary defenses. Dorsal spines improved the secondary defense but weakened the primary defense against tree frogs. We also detected a trade‐off in which dorsal spines and explanate margins improved secondary defenses against mutually exclusive predator types. Adaptation to different predatory regimes and functional trade‐offs may mediate the diversification of external morphological defenses in Cassidinae leaf beetles.  相似文献   

2.
Zooplankton is a morphologically and taxonomically diverse group and includes organisms that vary in size by many orders of magnitude, but they are all faced with the common problem of collecting food from a very dilute suspension. In order to maintain a viable population in the face of mortality, zooplankton in the ocean have to clear daily a volume of ambient water for prey particles that is equivalent to about 106 times their own body volume. While most size‐specific vital rates and mortality rates decline with size, the clearance requirement is largely size‐independent because food availability also declines with size. There is a limited number of solutions to the problem of concentrating dilute prey from a sticky medium: passive and active ambush feeding; feeding‐current feeding, where the prey is either intercepted directly, retained on a filter, or individually perceived and extracted from the feeding current; cruise feeding; and colonization of large particles and marine snow aggregates. The basic mechanics of these food‐collection mechanisms are described, and it is shown that their efficiencies are inherently different and that each of these mechanisms becomes less efficient with increasing size. Mechanisms that compensate for this decline in efficiency are described, including inflation of feeding structures and development of vision. Each feeding mode has implications beyond feeding in terms of risk of encountering predators and chance of meeting mates, and they partly target different types of prey. The main dichotomy is between (inefficient) ambush feeding on motile prey and the more efficient active feeding modes; a secondary dichotomy is between (efficient) hovering and (less efficient) cruising feeding modes. The efficiencies of the various feeding modes are traded off against feeding‐mode‐dependent metabolic expenses, predation risks, and mating chances. The optimality of feeding strategies, evaluated as the ratio of gain over risk, varies with the environment, and may explain both size‐dependent and spatio‐temporal differences in distributions of various feeding types as well as other aspects of the biology of zooplankton (mating behaviour, predator defence strategies).  相似文献   

3.
In aquatic ecosystems, unicellular algae form the basis of the food webs. Theoretical and experimental studies have demonstrated that one of the mechanisms that maintain high diversity of phytoplankton is through predation and the consequent evolution of defence mechanisms. Proposed defence mechanisms in phytoplankton are diverse and include physiological (e.g. toxicity, bioluminescence), morphological (e.g. silica shell, colony formation), and behavioural (e.g. escape response) traits. However, the function of many of the proposed defence mechanisms remains elusive, and the costs and benefits (trade‐offs) are often unquantified or undocumented. Here, we provide an overview of suggested phytoplankton defensive traits and review their experimental support. Wherever possible we quantify the trade‐offs from experimental evidence and theoretical considerations. In many instances, experimental evidence suggests that defences are costless. However, we argue that (i) some costs materialize only under natural conditions, for example, sinking losses, or dependency on the availability of specific nutrients, and (ii) other costs become evident only under resource‐deficient conditions where a rivalry for limiting resources between growth and defence occurs. Based on these findings, we suggest two strategies for quantifying the costs of defence mechanisms in phytoplankton: (i) for the evaluation of defence costs that are realized under natural conditions, a mechanistic understanding of the hypothesized component processes is required; and (ii) the magnitude of the costs (i.e. growth reduction) must be assessed under conditions of resource limitation.  相似文献   

4.
Specialization is fundamentally important in biology because specialized traits allow species to expand into new environments, in turn promoting population differentiation and speciation. Specialization often results in trade‐offs between traits that maximize fitness in one environment but not others. Despite the ubiquity of trade‐offs, we know relatively little about how consistently trade‐offs evolve between populations when multiple sets of populations experience similarly divergent selective regimes. In the present study, we report a case study on Brachyrhaphis fishes from different predation environments. We evaluate apparent within/between population trade‐offs in burst‐speed and endurance at two levels of evolutionary diversification: high‐ and low‐predation populations of Brachyrhaphis rhabdophora, and sister species Brachyrhaphis roseni and Brachyrhaphis terrabensis, which occur in high‐ and low‐predation environments, respectively. Populations of Brachyrhaphis experiencing different predation regimes consistently evolved swimming specializations indicative of a trade‐off between two swimming forms that are likely highly adaptive in the environment in which they occur. We show that populations have become similarly locally adapted at both levels of diversification, suggesting that swimming specialization has evolved rather rapidly and persisted post‐speciation. Our findings provide valuable insight into how local adaptation evolves at different stages of evolutionary divergence.  相似文献   

5.
Reliance on fossil fuels is causing unprecedented climate change and is accelerating environmental degradation and global biodiversity loss. Together, climate change and biodiversity loss, if not averted urgently, may inflict severe damage on ecosystem processes, functions and services that support the welfare of modern societies. Increasing renewable energy deployment and expanding the current protected area network represent key solutions to these challenges, but conflicts may arise over the use of limited land for energy production as opposed to biodiversity conservation. Here, we compare recently identified core areas for the expansion of the global protected area network with the renewable energy potential available from land‐based solar photovoltaic, wind energy and bioenergy (in the form of Miscanthus × giganteus). We show that these energy sources have very different biodiversity impacts and net energy contributions. The extent of risks and opportunities deriving from renewable energy development is highly dependent on the type of renewable source harvested, the restrictions imposed on energy harvest and the region considered, with Central America appearing at particularly high potential risk from renewable energy expansion. Without restrictions on power generation due to factors such as production and transport costs, we show that bioenergy production is a major potential threat to biodiversity, while the potential impact of wind and solar appears smaller than that of bioenergy. However, these differences become reduced when energy potential is restricted by external factors including local energy demand. Overall, we found that areas of opportunity for developing solar and wind energy with little harm to biodiversity could exist in several regions of the world, with the magnitude of potential impact being particularly dependent on restrictions imposed by local energy demand. The evidence provided here helps guide sustainable development of renewable energy and contributes to the targeting of global efforts in climate mitigation and biodiversity conservation.  相似文献   

6.
Group living is favorable to pathogen spread due to the increased risk of disease transmission among individuals. Similar to individual immune defenses, social immunity, that is antiparasite defenses mounted for the benefit of individuals other than the actor, is predicted to be altered in social groups. The eusocial honey bee (Apis mellifera) secretes glucose oxidase (GOX), an antiseptic enzyme, throughout its colony, thereby providing immune protection to other individuals in the hive. We conducted a laboratory experiment to investigate the effects of group density on social immunity, specifically GOX activity, body mass and feeding behavior in caged honey bees. Individual honeybees caged in a low group density displayed increased GOX activity relative to those kept at a high group density. In addition, we provided evidence for a trade‐off between GOX activity and body mass: Individuals caged in the low group density had a lower body mass, despite consuming more food overall. Our results provide the first experimental evidence that group density affects a social immune response in a eusocial insect. Moreover, we showed that the previously reported trade‐off between immunity and body mass extends to social immunity. GOX production appears to be costly for individuals, and potentially the colony, given that low body mass is correlated with small foraging ranges in bees. At high group densities, individuals can invest less in social immunity than at low densities, while presumably gaining shared protection from infection. Thus, there is evidence that trade‐offs at the individual level (GOX vs. body mass) can affect colony‐level fitness.  相似文献   

7.
Most larval drosophilids eat the microorganisms that develop in rotting fruit, a relatively protein‐rich resource. By contrast, the spotted‐wing Drosophila suzukii Matsumara (Diptera: Drosophilidae) uniquely develops in ripening fruit, a protein‐poor, carbohydrate‐rich resource. This shift in larval nutritional niche has led to D. suzukii being a significant agricultural pest in the U.S.A. and Europe. Although occupying a new niche may benefit a species by reducing competition, adaptation in host use may generate trade‐offs affecting fitness. To test the hypothesis that fitness trade‐offs will change with adaptation to novel larval diets, D. suzukii larval development on either a diet of a fresh, ripe blueberry (a natural host) or standard artificial Drosophila media (protein‐rich) is compared and the effect of diet on development time from egg to adult, adult body size and male wing spot area, and female fecundity is assessed. Larval development time differs, with larvae on the blueberry emerging as adults earlier than those on the artificial medium, although other fitness measures do not vary between the two diets. In addition, the faster development time on a blueberry does not trade off with body size as expected, although early fecundity is delayed in females that develop on blueberries. Thus, adaptation to a novel larval diet environment does not come at a cost to the ability to develop in protein‐rich resources.  相似文献   

8.
Environmental factors influence variation in life histories by affecting growth, development, and reproduction. We conducted an experiment in outdoor mesocosms to examine how diet and a time constraint on juvenile development (pond‐drying) influence life‐history trade‐offs (growth, development, adult body mass) in the caddis fly Limnephilus externus (Trichoptera: Limnephilidae). We predicted that: (1) diet supplementation would accelerate larval growth and development, and enhance survival to adulthood; (2) pond‐drying would accelerate development and increase larval mortality; and (3) the relationship between adult mass and age at maturity would be negative. Diet supplementation did lead to larger adult mass under nondrying conditions, but did not significantly alter growth or development rates. Contrary to predictions, pond‐drying reduced growth rates and delayed development. The slope (positive or negative) of the female mass–age at maturity relationship depended on interactions with diet or pond‐drying, but the male mass–age relationship was negative and independent of treatment. Our results suggest that pond‐drying can have negative effects on the future fitness of individuals by increasing the risk of desiccation‐induced, pre‐reproductive mortality and decreasing adult body size at maturity. These negative effects on life history cannot be overcome with additional nutritional resources in this species. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 495–504.  相似文献   

9.
Spiders (Araneae) play key roles in ecosystems, not only as common and abundant generalist predators, but also as major contributors to biodiversity in many areas. In addition, due to their short generation times and high mobility, spiders respond rapidly to small changes in their environment, potentially making them useful indicators for restoration monitoring. However, few studies have focused on spider responses to grassland restoration in the United States. We compared degraded, native, and restored grassland sites to examine how spider communities and habitat respond to arid grassland restoration. We also examined how responses varied with the age of the restoration project. Spider communities in native sites differed from those in restored and degraded sites in several ways: native sites had fewer spiders and a different community composition than degraded and restored sites. However, native and restored sites had more species than degraded sites. Chronosequence data showed trends for lower abundance, higher species richness, and changing community composition as restoration projects mature. Several habitat variables were closely linked to variation in spider communities including cover of invasive annual grasses, litter, and biological soil crusts. Our data suggest that spider and vegetation responses to grassland restoration efforts can be successful in the long term—with resulting communities becoming more similar to native ones—and that spiders are useful indictors of grassland restoration. Our results also suggest that restoration may involve balancing trade‐offs between ecosystem services, with potential losses in predatory control offset by increases in biodiversity with restoration effort.  相似文献   

10.
Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial‐scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade‐offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade‐offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology.  相似文献   

11.
Biochar application to soil is currently widely advocated for a variety of reasons related to sustainability. Typically, soil amelioration with biochar is presented as a multiple‐‘win’ strategy, although it is also associated with potential risks such as environmental contamination. The most often claimed benefits of biochar (i.e. the ‘wins’) include (i) carbon sequestration; (ii) soil fertility enhancement; (iii) biofuel/bioenergy production; (iv) pollutant immobilization; and (v) waste disposal. However, the vast majority of studies ignore possible trade‐offs between them. For example, there is an obvious trade‐off between maximizing biofuel production and maximizing biochar production. Also, relatively little attention has been paid to mechanisms, as opposed to systems impacts, behind observed biochar effects, often leaving open the question as to whether they reflect truly unique properties of biochar as opposed to being simply the short‐term consequences of a fertilization or liming effect. Here, we provide an outline for the future of soil biochar research. We first identify possible trade‐offs between the potential benefits. Second, to be able to better understand and quantify these trade‐offs, we propose guidelines for robust experimental design and selection of appropriate controls that allow both mechanistic and systems assessment of biochar effects and trade‐offs between the wins. Third, we offer a conceptual framework to guide future experiments and suggest guidelines for the standardized reporting of biochar experiments to allow effective between‐site comparisons to quantify trade‐offs. Such a mechanistic and systems framework is required to allow effective comparisons between experiments, across scales and locations, to guide policy and recommendations concerning biochar application to soil.  相似文献   

12.
1. Agricultural intensification has caused dramatic biodiversity loss in many agricultural landscapes over the last century. Here, we investigated whether new types of farm ponds (made of artificial substrata) in intensive systems and natural‐substratum ponds in traditional farming systems differ in their value for aquatic biodiversity conservation. 2. We analysed the main patterns of environmental variation, compared α‐, β‐ and γ‐diversity of macroinvertebrates between ponds types and evaluated the role of submerged aquatic vegetation (SAV). Generalised additive models (GAM) were used to analyse the relationships of α‐ and β‐diversity with environmental predictors, and variation partitioning to separate the effect of environmental and spatial characteristics on the variation in macroinvertebrate assemblages. Moran’s eigenvector maps (MEMs) were used to define spatial variables. 3. A principal coordinate analysis (PCoA) detected a primary environmental gradient that separated nutrient‐rich ponds from those dominated by SAV; a secondary morphometric gradient distinguished natural‐substratum ponds, with large surface area and structural complexity, from artificial‐substratum ponds with steeper slopes. Natural‐substratum ponds had almost twice the α‐ and γ‐diversity of artificial‐substratum ponds, and diversity significantly increased when SAV was present, particularly in artificial‐substratum ponds. Total phosphorus (TP) strongly contributed to explain the patterns in diversity, while SAV was a significant predictor of assemblage composition and diversity. GAMs revealed optima of both α‐diversity at intermediate SAV covers and β‐diversity at intermediate–high TP concentrations. 4. These findings have important implications for conservation planning. Adaptation of artificial‐substratum ponds by adding natural substratum and smoothing the gradient of pond margins would improve their conservation value. Development of SAV with occasional harvests and certain cautionary measures to control nutrient levels may also improve both the agronomical and environmental function of ponds.  相似文献   

13.
Recent patterns of global change have highlighted the importance of understanding the dynamics and mechanisms of species range shifts and expansions. Unique demographic features, spatial processes, and selective pressures can result in the accumulation and evolution of distinctive phenotypic traits at the leading edges of expansions. We review the characteristics of expanding range margins and highlight possible mechanisms for the appearance of phenotypic differences between individuals at the leading edge and core of the range. The development of life history traits that increase dispersal or reproductive ability is predicted by theory and supported with extensive empirical evidence. Many examples of rapid phenotypic change are associated with trade‐offs that may influence the persistence of the trait once expansion ends. Accounting for the effects of edge phenotypes and related trade‐offs could be critical for predicting the spread of invasive species and population responses to climate change.  相似文献   

14.
1. Foraging animals are often faced with foods that vary in several important attributes, some of which may be in conflict with one another. For ectothermic animals, food temperature can be an important characteristic, as the consumption of cold foods is metabolically costly. 2. Here, the effect of food temperature on food preferences in the green‐headed ant Rhytidoponera metallica (Smith, 1858) was investigated. The first aim of the study was to determine how food concentration (caloric value) and relative food temperature influenced colony‐level preferences. We found that, all else being equal, green‐headed ant colonies preferred warmer food solutions over colder solutions, and more concentrated food solutions over less concentrated ones. 3. Next, the question of whether green‐head ant colonies could make trade‐offs between temperature and food concentration was tested. It was found that ant colonies switched their preferences in favour of a colder food solution when the colder food solution was 10 times more concentrated than the warmer food solution. 4. These experiments show that temperature is an important characteristic shaping food preferences in ants. Moreover, we show that colonies can make trade‐offs between food concentration and food temperature.  相似文献   

15.
The virulence–transmission trade‐off hypothesis proposed more than 30 years ago is the cornerstone in the study of host–parasite co‐evolution. This hypothesis rests on the premise that virulence is an unavoidable and increasing cost because the parasite uses host resources to replicate. This cost associated with replication ultimately results in a deceleration in transmission rate because increasing within‐host replication increases host mortality. Empirical tests of predictions of the hypothesis have found mixed support, which cast doubt about its overall generalizability. To quantitatively address this issue, we conducted a meta‐analysis of 29 empirical studies, after reviewing over 6000 published papers, addressing the four core relationships between (1) virulence and recovery rate, (2) within‐host replication rate and virulence, (3) within‐host replication and transmission rate, and (4) virulence and transmission rate. We found strong support for an increasing relationship between replication and virulence, and replication and transmission. Yet, it is still uncertain if these relationships generally decelerate due to high within‐study variability. There was insufficient data to quantitatively test the other two core relationships predicted by the theory. Overall, the results suggest that the current empirical evidence provides partial support for the trade‐off hypothesis, but more work remains to be done.  相似文献   

16.
Niche partitioning among close relatives may reflect trade‐offs underlying species divergence and coexistence (e.g., between stress tolerance and competitive ability). We quantified the effects of habitat and congeneric species interactions on fitness for two closely related herbaceous plant species, Mimulus guttatus and Mimulus laciniatus, in three common habitat types within their sympatric range. Drought stress strongly reduced survival of M. guttatus in fast‐drying seeps occupied by M. laciniatus, suggesting that divergent habitat adaptation maintains this niche boundary. However, neither seedling performance nor congeneric competition explained the absence of M. laciniatus from shady streams where M. guttatus thrives. M. laciniatus may be excluded from this habitat by competition with other species in the community or mature M. guttatus. Species performance and competitive ability were similar in sympatric meadows where plant community stature and the growing season length are intermediate between seeps and streams. Stochastic effects (e.g., dispersal among habitats or temporal variation) may contribute to coexistence in this habitat. Habitat adaptation, species interactions, and stochastic mechanisms influence sympatric distributions for these recently diverged species.  相似文献   

17.
The Australian zebra finch, Taeniopygia guttata, is a widely used model organism, yet few studies have compared domesticated and wild birds with the aim of examining its relevance as an evolutionary model species. Domestic and wild broods hatch over approximately 4 and 2 days, respectively, which is important given that nestlings can fledge after as little as 12 days, although 16–18 days is common. We aimed to evaluate the extent to which the greater hatching asynchrony in domestic stock may effect reproductive success through greater variance in size hierarchies, variance in within‐brood growth rates, and partial brood mortality. Therefore, by simultaneously controlling brood sizes and experimentally manipulating hatching intervals in both domesticated and wild birds, we investigated the consequences of hatching intervals for fledging success and nestling growth patterns, as well as trade‐offs. Fledging success was similarly high in domestic and wild broods of either hatching pattern. Nonetheless, between‐brood analyses revealed that domestic nestlings had significantly higher masses, larger skeletal characters, and longer wings than their wild counterparts, although wild nestlings had comparable wing lengths at the pre‐fledging stage. Moreover, within‐brood analyses revealed only negligible differences between domestic and wild nestlings, and larger effects of hatching order and hatching pattern. Therefore, despite significant differences in the hatching intervals, and the ultimate size achieved by nestlings, the domestication process does not appear to have significantly altered nestling growth trade‐offs. The present study provides reassuring evidence that studies involving domesticated zebra finches, or other domesticated model organisms, may provide reasonable adaptive explanations in behavioural and evolutionary ecology. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 763–773.  相似文献   

18.
19.
Morphology, flight muscles, and reproductive development were compared between long‐winged (LW) and short‐winged (SW) morphs of the cricket Velarifictorus ornatus (Shiraki) (Orthoptera: Gryllidae). There was no difference in body weight and pre‐oviposition between the two morphs, but LW individuals had better‐developed flight muscles than SW individuals during and after emergence of the adult. The flight muscles at adult emergence represented 11.9% of the total body weight in the LW female and 4.9% in the SW female. In addition, the weight of the flight muscle of LW females increased by 50% during the first 5 days, whereas the flight muscle of the SW variant increased only slightly after adult emergence. The process of oviposition in LW, SW, and de‐alated females varied: SW females produced more eggs at the early stage than LW females, but de‐alation could shorten the time until the peak of egg laying and caused histolysis of flight muscles of LW females. There was no significant difference in total egg production between the above three groups. In the male, unlike the female, the accessory glands of the two wing morphs enlarged continuously at the same rate. There was no difference between the two wing morphs in the mass of the testes during the first 7 days after adult emergence.  相似文献   

20.
Ageing and the resulting increased likelihood mortality are the inescapable fate of organisms because selection pressures on genes that exert their function late in life is weak, promoting the evolution of genes that enhance early‐life reproductive performance at the same time as sacrificing late survival. Heat shock proteins (HSP) are known to buffer various environmental stresses and are also involved in protein homeostasis and longevity. The characteristics of genes for HSPs (hsp) imply that they affect various life‐history traits, which in turn affect longevity; however, little is known about the effects of hsp genes on life‐history traits and their interaction with longevity. In the present study, the effects of hsp genes on multiple fitness traits, such as locomotor activity, total fecundity, early fecundity and survival time, are investigated in Drosophila melanogaster Meigen using RNA interference (RNAi). In egg‐laying females, RNAi knockdown of six hsp genes (hsp22, hsp23, hsp67Ba, hsp67Bb, hsp67Bc and hsp27‐like) does not shorten survival but rather increases it. Knockdown of five of those genes on an individual basis reduces early‐life reproduction, suggesting that several hsp genes mediate the trade‐off between early reproduction and late survival. The data indicate a positive effect of hsp genes on early reproduction and also negative effects on survival time, supporting the antagonistic pleiotropic effects predicted by the optimality theory of ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号