首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low hydrogen adsorption free energy and strong acid/alkaline resistance of layered MoS2 render it an excellent pH‐universal electrocatalyst for hydrogen evolution reaction (HER). However, the catalytic activity is dominantly suppressed by its limited active‐edge‐site density. Herein, a new strategy is reported for making a class of strongly coupled MoS2 nanosheet–carbon macroporous hybrid catalysts with engineered unsaturated sulfur edges for boosting HER catalysis by controlling the precursor decomposition and subsequent sodiation/desodiation. Both surface chemical state analysis and first‐principles calculations verify that the resultant catalysts exhibit a desirable valence‐electron state with high exposure of unsaturated sulfur edges and an optimized hydrogen adsorption free energy, significantly improving the intrinsic HER catalytic activity. Such an electrocatalyst exhibits superior and stable catalytic activity toward HER with small overpotentials of 136 mV in 0.5 m H2SO4 and 155 mV in 1 m KOH at 10 mA cm?2, which is the best report for MoS2–C hybrid electrocatalysts to date. This work paves a new avenue to improve the intrinsic catalytic activity of 2D materials for hydrogen generation.  相似文献   

2.
Herein, the authors explicitly reveal the dual‐functions of N dopants in molybdenum disulfide (MoS2) catalyst through a combined experimental and first‐principles approach. The authors achieve an economical, ecofriendly, and most efficient MoS2‐based hydrogen evolution reaction (HER) catalyst of N‐doped MoS2 nanosheets, exhibiting an onset overpotential of 35 mV, an overpotential of 121 mV at 100 mA cm?2 and a Tafel slope of 41 mV dec?1. The dual‐functions of N dopants are (1) activating the HER catalytic activity of MoS2 S‐edge and (2) enhancing the conductivity of MoS2 basal plane to promote rapid charge transfer. Comprehensive electrochemical measurements prove that both the amount of active HER sites and the conductivity of N‐doped MoS2 increase as a result of doping N. Systematic first‐principles calculations identify the active HER sites in N‐doped MoS2 edges and also illustrate the conducting charges spreading over N‐doped basal plane induced by strong Mo 3d –S 2p –N 2p hybridizations at Fermi level. The experimental and theoretical research on the efficient HER catalysis of N‐doped MoS2 nanosheets possesses great potential for future sustainable hydrogen production via water electrolysis and will stimulate further development on nonmetal‐doped MoS2 systems to bring about novel high‐performance HER catalysts.  相似文献   

3.
Exploiting noble‐metal‐free cocatalysts is of huge interest for photocatalytic water splitting using solar energy. As an efficient cocatalyst in photocatalysis, MoS2 is shown promise as a low‐cost alternative to Pt for hydrogen evolution. Here we report a systematical study on controlled synthesis of MoS2 with layer number ranging from ≈1 to 112 and their activities for photocatalytic H2 evolution over commercial CdS. A drastic increase in photocatalytic H2 evolution is observed with decreasing MoS2 layer number. Particularly for the single‐layer (SL) MoS2, the SL‐MoS2/CdS sample reaches a high H2 generation rate of ≈2.01 × 10?3m h?1 in Na2S–Na2SO3 solutions and ≈2.59 × 10?3m h?1 in lactic acid solutions, corresponding to an apparent quantum efficiency of 30.2% and 38.4% at 420 nm, respectively. In addition to the more exposed edges and unsaturated active S atoms, valence band–XPS and Mott–Schottky plots analysis indicate that the SL MoS2 has the more negative conduction band energy level than the H+/H2 potential, facilitating the hydrogen reduction.  相似文献   

4.
An artificial photosynthesis system based on N‐doped ZnTe nanorods decorated with an N‐doped carbon electrocatalyst layer is fabricated via an all‐solution process for the selective conversion of CO2 to CO. Substitutional N‐doping into the ZnTe lattice decreases the bandgap slightly and improves the charge transfer characteristics, leading to enhanced photoelectrochemical activity. Remarkable N‐doping effects are also demonstrated by the N‐doped carbon layer that promotes selective CO2‐to‐CO conversion instead of undesired water‐to‐H2 reduction by providing active sites for CO2 adsorption and activation, even in the absence of metallic redox centers. The photocathode shows promising performance in photocurrent generation (?1.21 mA cm?2 at ?0.11 VRHE), CO selectivity (dominant CO production of ≈72%), minor H2 reduction (≈20%), and stability (corrosion suppression). The metal‐free electrocatalyst/photocatalyst combination prepared via a cost‐effective solution process exhibits high performance due to synergistic effects between them, and thus may find application in practical solar fuel production.  相似文献   

5.
MoS2 has emerged as a promising alternative electrocatalyst for the hydrogen evolution reaction (HER) due to high intrinsic per‐site activity on its edge sites and S‐vacancies. However, a significant challenge is the limited density of such sites. Reducing the size and layer number of MoS2 and vertically aligning them would be an effective way to enrich and expose such sites for HER. Herein, a facile self‐limited on‐site conversion strategy for synthesizing monolayer MoS2 in a couple of nanometers which are highly dispersed and vertically aligned on 3D porous carbon sheets is reported. It is discovered that the preformation of well‐dispersed MoO3 nanodots in 1–2 nm as limited source is the key for the fabrication of such an ultrasmall MoS2 monolayer. As indicated by X‐ray photoelectron spectroscopy and electron spin resonance data, these ultrasmall MoS2 monolayers are rich in accessible S‐edge sites and vacancies and the smaller MoS2 monolayers the more such sites they have, leading to enhanced electrocatalytic activity with a low overpotential of 126 mV at 10 mA cm?2 and 140 mV at 100 mA mg?1 for HER. This state‐of‐the‐art performance for MoS2 electrocatalysts enables the present strategy as a new avenue for exploring well‐dispersed ultrasmall nanomaterials as efficient catalysts.  相似文献   

6.
MoS2 has drawn great attention as a promising Pt‐substituting catalyst for the hydrogen evolution reaction (HER). This work utilizes H2 as the structure directing agent (SDA) to in situ synthesize a range of Co‐MoS2n (n = 0, 0.5, 1.0, 1.4, 2.0) with expanded interlayer spacings (d = 9.2 – 11.1 Å), which significantly boost their HER activities. The Co‐MoS2‐1.4 with an interlayer spacing of 10.3 Å presents an extremely low overpotential of 56 mV (at 10 mA cm?2) and a Tafel slope of 32 mV dec?1, which is superior than most reported MoS2‐based catalysts. Density function theory calculations are used to gain insights that i) the H2 can be dissociatively adsorbed on MoS2 and greatly affect the related surface free energy by regulating the interlayer spacing; ii) the expanded interlayer spacing can significantly decrease the absolute value of ΔGH, thereby leading to greatly promoted HER activity. Additionally, the large amounts of 1T phase (73.9–79.2%) and Co‐Mo‐S active sites (40.9–91.3%) also contribute to the enhanced HER activity of the synthesized samples. Overall, a simple new strategy for in situ synthesis of Co‐MoS2 with an expanded interlayer spacing is proposed, which sheds light on other 2D energy material designs.  相似文献   

7.
Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one‐step hydrothermal method is reported. The synergistic effects between the layered MoS2 nanosheets and N‐doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS2/N‐RGO‐180 exhibits the excellent catalytic activity with a low onset potential of ?5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec?1, a high exchange current density of 7.4 × 10?4 A cm?2, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS2/N‐RGO‐180 nanocomposite is superior to the most reported MoS2‐based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low‐cost MoS2‐based electrocatalysts with the extraordinary HER performance is presented.  相似文献   

8.
Tailoring active sites in earth‐abundant non‐noble metal electrocatalysts are required toward widespread applications in sustainable energy fields. Herein, an integrated mesoporous heterostructure array is reported by a hydrogenation/nitridation‐induced in situ growth strategy. Highly conductive oxygen‐vacancies‐rich tungsten oxynitride (Vo‐WON) nanorod array acts as the backbone encapsulated by ultrathin nitrogen‐doped carbon (NC) nanolayers, forming high‐quality shell/core NC/Vo‐WON heterostructures. Density functional theory calculations reveal that defect‐rich heterostructure arrays not only enhance the conductivity and modulate electronic structure but also promote the adsorption and dissociation of reactants and offer substantial potential sites. As expected, porous NC/Vo‐WON array exhibits a small overpotential of 16 mV at the current density of 10 mA cm?2 and a low Tafel slope of 33 mV per decade in alkaline media, accompanied by negligible loss upon a large current density over 100 h. Benefiting from outstanding electrocatalytic hydrogen evolution reaction performance and stability, this defective heterostructure could serve as a prominent alternative electrocatalyst for renewable energy applications.  相似文献   

9.
A novel hybrid of small core@shell structured CoSx@Cu2MoS4 uniformly hybridizing with a molybdenum dichalcogenide/N,S‐codoped graphene hetero‐network (CoSx@Cu2MoS4‐MoS2/NSG) is prepared by a facile route. It shows excellent performance toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) in alkaline medium. The hybrid exhibits rapid kinetics for ORR with high electron transfer number of ≈3.97 and exciting durability superior to commercial Pt/C. It also demonstrates great potential with remarkable stability for HER and OER, requiring low overpotential of 118.1 and 351.4 mV, respectively, to reach a current density of 10 mA cm?2. An electrolyzer based on CoSx@Cu2MoS4‐MoS2/NSG produces low cell voltage of 1.60 V and long‐term stability, surpassing a device of Pt/C + RuO2/C. In addition, a Zn‐air battery using cathodic CoSx@Cu2MoS4‐MoS2/NSG catalyst delivers a high cell voltage of ≈1.44 V and a power density of 40 mW cm?2 at 58 mA cm?2, better than the state‐of‐the‐art Pt/C catalyst. These achievements are due to the rational combination of highly active core@shell CoSx@Cu2MoS4 with large‐area and high‐porosity MoS2/NSG to produce unique physicochemical properties with multi‐integrated active centers and synergistic effects. The outperformances of such catalyst suggest an advanced candidate for multielectrocatalysis applications in metal‐air batteries and hydrogen production.  相似文献   

10.
Efficient and selective earth‐abundant catalysts are highly desirable to drive the electrochemical conversion of CO2 into value‐added chemicals. In this work, a low‐cost Sn modified N‐doped carbon nanofiber hybrid catalyst is developed for switchable CO2 electroreduction in aqueous medium via a straightforward electrospinning technique coupled with a pyrolysis process. The electrocatalytic performance can be tuned by the structure of Sn species on the N‐doped carbon nanofibers. Sn nanoparticles drive efficient formate formation with a high current density of 11 mA cm?2 and a faradaic efficiency of 62% at a moderate overpotential of 690 mV. Atomically dispersed Sn species promote conversion of CO2 to CO with a high faradaic efficiency of 91% at a low overpotential of 490 mV. The interaction between Sn species and pyridinic‐N may play an important role in tuning the catalytic activity and selectivity of these two materials.  相似文献   

11.
A copper‐oxide‐based catalyst enriched with paramelaconite (Cu4O3) is presented and investigated as an electrocatalyst for facilitating electroreduction of CO2 to ethylene and other hydrocarbons. Cu4O3 is a member of the copper‐oxide family and possesses an intriguing mixed‐valance nature, incorporating an equal number of Cu+ and Cu2+ ions in its crystal structure. The material is synthesized using a solvothermal synthesis route and its structure is confirmed via powder X‐ray diffraction, transmission electron microscope based selected area electron diffraction, and X‐ray photoelectron spectroscopy. A flow reactor equipped with a gas diffusion electrode is utilized to test a copper‐based catalyst enriched with the Cu4O3 phase under CO2 reduction conditions. The Cu4O3‐rich catalyst (PrC) shows a Faradaic efficiency for ethylene over 40% at 400 mA cm?2. At ?0.64 versus reversible hydrogen electrode, the highest C2+/C1 product ratio of 4.8 is achieved, with C2+ Faradaic efficiency over 61%. Additionally, the catalyst exhibits a stable performance for 24 h at a constant current density of 200 mA cm?2.  相似文献   

12.
The ion insertion properties of MoS2 continue to be of widespread interest for energy storage. While much of the current work on MoS2 has been focused on the high capacity four‐electron reduction reaction, this process is prone to poor reversibility. Traditional ion intercalation reactions are highlighted and it is demonstrated that ordered mesoporous thin films of MoS2 can be utilized as a pseudocapacitive energy storage material with a specific capacity of 173 mAh g?1 for Li‐ions and 118 mAh g?1 for Na‐ions at 1 mV s?1. Utilizing synchrotron grazing incidence X‐ray diffraction techniques, fast electrochemical kinetics are correlated with the ordered porous structure and with an iso‐oriented crystal structure. When Li‐ions are utilized, the material can be charged and discharged in 20 seconds while still achieving a specific capacity of 140 mAh g?1. Moreover, the nanoscale architecture of mesoporous MoS2 retains this level of lithium capacity for 10 000 cycles. A detailed electrochemical kinetic analysis indicates that energy storage for both ions in MoS2 is due to a pseudocapacitive mechanism.  相似文献   

13.
In this study, scalable, flame spray synthesis is utilized to develop defective ZnO nanomaterials for the concurrent generation of H2 and CO during electrochemical CO2 reduction reactions (CO2RR). The designed ZnO achieves an H2/CO ratio of ≈1 with a large current density (j) of 40 mA cm?2 during long‐term continuous reaction at a cell voltage of 2.6 V. Through in situ atomic pair distribution function analysis, the remarkable stability of these ZnO structures is explored, addressing the knowledge gap in understanding the dynamics of oxide catalysts during CO2RR. Through optimization of synthesis conditions, ZnO facets are modulated which are shown to affect reaction selectivity, in agreement with theoretical calculations. These findings and insights on synthetic manipulation of active sites in defective metal‐oxides can be used as guidelines to develop active catalysts for syngas production for renewable power‐to‐X to generate a range of fuels and chemicals.  相似文献   

14.
Molybdenum disulfide (MoS2) has been recognized as a promising anode material for high‐energy Li‐ion (LIBs) and Na‐ion batteries (SIBs) due to its apparently high capacity and intriguing 2D‐layered structure. The low conductivity, unsatisfied mechanical stability, and limited active material utilization are three key challenges associated with MoS2 electrodes especially at high current rates and mass active material loading. Here, vertical MoS2 nanosheets are controllably patterned onto electrochemically exfoliated graphene (EG). Within the achieved hierarchical architecture, the intimate contact between EG and MoS2 nanosheets, interconnected network, and effective exposure of active materials by vertical channels simultaneously overcomes the above three problems, enabling high mechanical integrity and fast charge transport kinetics. Serving as anode material for LIBs, EG‐MoS2 with 95 wt% MoS2 content delivered an ultrahigh‐specific capacity of 1250 mA h g?1 after 150 stable cycles at 1 A g?1, which is among the highest values in all reported MoS2 electrodes, and excellent rate performance (970 mA h g?1 at 5 A g?1). Moreover, impressive cycling stability (509 mA h g?1 at 1 A g?1 after 250 cycles) and rate capability (423 mA h g?1 at 2 A g?1) were also achieved for SIBs. The area capacities reached 1.27 and 0.49 mA h cm?2 at ≈1 mA cm?2 for LIBs and SIBs, respectively. This work may inspire the development of new 2D hierarchical structures for high efficiency energy storage and conversion.  相似文献   

15.
Electrochemical reduction of CO2 provides an opportunity to reach a carbon‐neutral energy recycling regime, in which CO2 emissions from fuel use are collected and converted back to fuels. The reduction of CO2 to CO is the first step toward the synthesis of more complex carbon‐based fuels and chemicals. Therefore, understanding this step is crucial for the development of high‐performance electrocatalyst for CO2 conversion to higher order products such as hydrocarbons. Here, atomic iron dispersed on nitrogen‐doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO2 reduction to CO. Fe/NG has a low reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen‐confined atomic Fe moieties on the nitrogen‐doped graphene layer is confirmed by aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. The CO2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N4) embedded in nitrogen‐doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.  相似文献   

16.
Molecular hydrogen can be generated renewably by water splitting with an “artificial‐leaf device”, which essentially comprises two electrocatalyst electrodes immersed in water and powered by photovoltaics. Ideally, this device should operate efficiently and be fabricated with cost‐efficient means using earth‐abundant materials. Here, a lightweight electrocatalyst electrode, comprising large surface‐area NiCo2O4 nanorods that are firmly anchored onto a carbon–paper current collector via a dense network of nitrogen‐doped carbon nanotubes is presented. This electrocatalyst electrode is bifunctional in that it can efficiently operate as both anode and cathode in the same alkaline solution, as quantified by a delivered current density of 10 mA cm?2 at an overpotential of 400 mV for each of the oxygen and hydrogen evolution reactions. By driving two such identical electrodes with a solution‐processed thin‐film perovskite photovoltaic assembly, a wired artificial‐leaf device is obtained that features a Faradaic H2 evolution efficiency of 100%, and a solar‐to‐hydrogen conversion efficiency of 6.2%. A detailed cost analysis is presented, which implies that the material‐payback time of this device is of the order of 100 days.  相似文献   

17.
Solution‐processed few‐layer MoS2 flakes are exploited as an active buffer layer in hybrid lead–halide perovskite solar cells (PSCs). Glass/FTO/compact‐TiO2/mesoporous‐TiO2/CH3NH3PbI3/MoS2/Spiro‐OMeTAD/Au solar cells are realized with the MoS2 flakes having a twofold function, acting both as a protective layer, by preventing the formation of shunt contacts between the perovskite and the Au electrode, and as a hole transport layer from the perovskite to the Spiro‐OMeTAD. As prepared PSC demonstrates a power conversion efficiency (η) of 13.3%, along with a higher lifetime stability over 550 h with respect to reference PSC without MoS2η/η = ?7% vs. Δη/η = ?34%). Large‐area PSCs (1.05 cm2 active area) are also fabricated to demonstrate the scalability of this approach, achieving η of 11.5%. Our results pave the way toward the implementation of MoS2 as a material able to boost the shelf life of large‐area perovskite solar cells in view of their commercialization.  相似文献   

18.
Exploring low‐cost hydrogen evolution reaction (HER) catalysts with remarkable activity over wide pH range (0–14) still remains an enormous challenge. Herein, for the first time, a novel platinum‐like, double‐deck carbon coated V8C7 networks with the highly active (110) facet exposed as a new efficient HER electrocatalyst is reported. The single‐crystal interweaved V8C7 networks are designed and fabricated based on a low crystal‐mismatch strategy and confinement effect of double‐deck carbon coating. In addition, electrochemical tests and theoretical simulation indicate that the metallic character of V8C7, high‐activity of exposed facet, and low barrier energy for water dissociation can contribute to highly catalytic activity of HER. Impressively, the HER performances of the interweaved V8C7 networks can be comparable to those of Pt at an all‐pH environment, with Tafel slopes of 44, 64, and 34.5 mV dec?1and overpotential of 47, 77, and 38 mV at ?10 mA cm?2 in 1 m KOH, 0.1 m phosphate buffer, and 0.5 m H2SO4, respectively. This work provides a blueprint for exploring new‐type platinum‐like catalysts for various energy conversion systems.  相似文献   

19.
Phenyl disulfide (PDS) is employed as an electrolyte additive in lithium–carbon dioxide (Li–CO2) batteries to allow for a solution‐mediated carbon dioxide reduction pathway. Thiophenolate anions, generated via electrochemical reduction of PDS, act as CO2 capture agents by forming the adduct S‐phenyl carbonothioate (SPC?) in solution. A mechanism of SPC?‐mediated CO2 capture and utilization is proposed and supported via carbon‐13 nuclear magnetic resonance spectroscopy and Fourier‐transform infrared spectroscopy. Reversible formation and decomposition of lithium carbonate and amorphous carbon during cycling, facilitated by the solution‐mediated pathway, are demonstrated with an array of characterization techniques. Li–CO2 batteries employing the PDS additive show vastly improved capacity, energy efficiency, and cycle life. The enhanced Li–CO2 battery performance offered by the proposed solution‐mediated reaction pathway offers a compelling step forward in the pursuit of reversible CO2 utilization.  相似文献   

20.
A synthesis methodology is demonstrated to produce MoS2 nanoparticles with an expanded atomic lamellar structure that are ideal for Faradaic‐based capacitive charge storage. While much of the work on MoS2 focuses on the high capacity conversion reaction, that process is prone to poor reversibility. The pseudocapacitive intercalation‐based charge storage reaction of MoS2 is investigated, which is extremely fast and highly reversible. A major challenge in the field of pseudocapacitive‐based energy storage is the development of thick electrodes from nanostructured materials that can sustain the fast inherent kinetics of the active nanocrystalline material. Here a composite electrode comprised of a poly(acrylic acid) binder, carbon fibers, and carbon black additives is utilized. These electrodes deliver a specific capacity of 90 mAh g?1 in less than 20 s and can be cycled 3000 times while retaining over 80% of the original capacity. Quantitative kinetic analysis indicates that over 80% of the charge storage in these MoS2 nanocrystals is pseudocapacitive. Asymmetric full cell devices utilizing a MoS2 nanocrystal‐based electrode and an activated carbon electrode achieve a maximum power density of 5.3 kW kg?1 (with 6 Wh kg?1 energy density) and a maximum energy density of 37 Wh kg?1 (with 74 W kg?1power density).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号