首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Autonomic, thermally‐induced shutdown of Lithium‐ion (Li‐ion) batteries is demonstrated by incorporating thermoresponsive polymer microspheres (ca. 4 μm) onto battery anodes or separators. When the internal battery environment reaches a critical temperature, the microspheres melt and coat the anode/separator with a nonconductive barrier, halting Li‐ion transport and shutting down the cell permanently. Three functionalization schemes are shown to perform cell shutdown: 1) poly(ethylene) (PE) microspheres coated on the anode, 2) paraffin wax microspheres coated on the anode, and 3) PE microspheres coated on the separator. Charge and discharge capacity is measured for Li‐ion coin cells containing microsphere‐coated anodes or separators as a function of capsule coverage. For PE coated on the anode, the initial capacity of the battery is unaffected by the presence of the PE microspheres up to a coverage of 12 mg cm?2 (when cycled at 1C), and full shutdown (>98% loss of initial capacity) is achieved in cells containing greater than 3.5 mg cm?2. For paraffin microspheres coated on the anode and PE microspheres coated on the separator, shutdown is achieved in cells containing coverages greater than 2.9 and 13.7 mg cm?2, respectively. Scanning electron microscopy images of electrode surfaces from cells that have undergone autonomic shutdown provides evidence of melting, wetting, and resolidification of PE into the anode and polymer film formation at the anode/separator interface.  相似文献   

2.
Safe rechargeable batteries of improved energy density and high power performance are urgently needed for the development of large electric devices. Herein, an Li‐based organic liquid anode is proposed, and an organic oxygen battery with a metal organic framework membrane separator is realized, which is able to conduct Li ions and separate other large species in the system. Equipped with the dual redox mediator strategy, the organic oxygen battery exhibits superior rate performance with long cycling life and low overpotential. A “solid electrolyte interface”‐like layer is observed between the organic liquid anode and the ion conducting separator. This work not only introduces a new type of anode for Li‐based batteries, but also provides fundamental insights for the better application of biphenyl‐based liquid anodes.  相似文献   

3.
Resources used in lithium‐ion batteries are becoming more expensive due to their high demand, and the global cobalt market heavily depends on supplies from countries with high geopolitical risks. Alternative battery technologies including magnesium‐ion batteries are therefore desirable. Progress toward practical magnesium‐ion batteries are impeded by an absence of suitable anodes that can operate with conventional electrolyte solvents. Although alloy‐type magnesium‐ion battery anodes are compatible with common electrolyte solvents, they suffer from severe failure associated with huge volume changes during cycling. Consequently, achieving more than 200 cycles in alloy‐type magnesium‐ion battery anodes remains a challenge. Here an unprecedented long‐cycle life of 1000 cycles, achieved at a relatively high (dis)charge rate of 3 C (current density: 922.5 mA g?1) in Mg2Ga5 alloy‐type anode, taking advantage of near‐room‐temperatures solid–liquid phase transformation between Mg2Ga5 (solid) and Ga (liquid), is demonstrated. This concept should open the way to the development of practical anodes for next‐generation magnesium‐ion batteries.  相似文献   

4.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   

5.
Due to unprecedented features including high‐energy density, low cost, and light weight, lithium–sulfur batteries have been proposed as a promising successor of lithium‐ion batteries. However, unresolved detrimental low Li‐ion transport rates in traditional carbon materials lead to large energy barrier in high sulfur loading batteries, which prevents the lithium–sulfur batteries from commercialization. In this report, to overcome the challenge of increasing both the cycling stability and areal capacity, a metallic oxide composite (NiCo2O4@rGO) is designed to enable a robust separator with low energy barrier for Li‐ion diffusion and simultaneously provide abundant active sites for the catalytic conversion of the polar polysulfides. With a high sulfur‐loading of 6 mg cm?2 and low sulfur/electrolyte ratio of 10, the assembled batteries deliver an initial capacity of 5.04 mAh cm?2 as well as capacity retention of 92% after 400 cycles. The metallic oxide composite NiCo2O4@rGO/PP separator with low Li‐ion diffusion energy barrier opens up the opportunity for lithium–sulfur batteries to achieve long‐cycle, cost‐effective operation toward wide applications in electric vehicles and electronic devices.  相似文献   

6.
This study presents a battery concept with a “mediator‐ion” solid electrolyte for the development of next‐generation electrochemical energy storage technologies. The active anode and cathode materials in a single cell can be in the solid, liquid, or gaseous form, which are separated by a sodium‐ion solid‐electrolyte separator. The uniqueness of this mediator‐ion strategy is that the redox reactions at the anode and the cathode are sustained by a shuttling of a mediator sodium ion between the anolyte and the catholyte through the solid‐state electrolyte. Use of the solid‐electrolyte separator circumvents the chemical‐crossover problem between the anode and the cathode, overcomes the dendrite‐problem when employing metal‐anodes, and offers the possibility of using different liquid electrolytes at the anode and the cathode in a single cell. The battery concept is demonstrated with two low‐cost metal anodes (zinc and iron), two liquid cathodes (bromine and potassium ferricyanide), and one gaseous cathode (air/O2) with a sodium‐ion solid electrolyte. This novel battery strategy with a mediator‐ion solid electrolyte is applicable to a wide range of electrochemical energy storage systems with a variety of cathodes, anodes, and mediator‐ion solid electrolytes.  相似文献   

7.
Mixed transition‐metal oxides (MTMOs), including stannates, ferrites, cobaltates, and nickelates, have attracted increased attention in the application of high performance lithium‐ion batteries. Compared with traditional metal oxides, MTMOs exhibit enormous potential as electrode materials in lithium‐ion batteries originating from higher reversible capacity, better structural stability, and high electronic conductivity. Recent advancements in the rational design of novel MTMO micro/nanostructures for lithium‐ion battery anodes are summarized and their energy storage mechanism is compared to transition‐metal oxide anodes. In particular, the significant effects of the MTMO morphology, micro/nanostructure, and crystallinity on battery performance are highlighted. Furthermore, the future trends and prospects, as well as potential problems, are presented to further develop advanced MTMO anodes for more promising and large‐scale commercial applications of lithium‐ion batteries.  相似文献   

8.
Rechargeable magnesium ion batteries are interesting as one of the alternative metal ion battery systems to lithium ion batteries due to the wide availability and accessibility of magnesium in the earth's crust. On the one hand, electrolyte solutions in which Mg metal anodes are fully reversible are not suitable for the use of high voltage/high capacity transition metal oxide cathodes due to complex surface phenomena. On the other hand, Mg metal anodes cannot work reversibly in conventional electrolyte solutions in which high voltage/high capacity Mg insertion cathodes can work because of passivation phenomena that fully block them. Replacing Mg metal with alternative anodes that can work reversibly in conventional electrolyte solutions could provide a promising route to elaborate high voltage and high capacity rechargeable Mg battery systems. Herein, the recent progress in alloy anodes based on group IIIA, IVA, VA elements is summarized. The theoretical evaluations, achievable capacities, synthetic strategies, battery test configurations, electrochemical properties, and underlying reaction mechanisms are systematically summarized and discussed. The key issues and challenges impeding their current use are identified and some valuable suggestions for their future development as practical reversible anodes for Mg batteries are provided.  相似文献   

9.
Rechargeable metal–sulfur batteries encounter severe safety hazards and fast capacity decay, caused by the flammable and shrinkable separator and unwanted polysulfide dissolution under elevated temperatures. Herein, a multifunctional Janus separator is designed by integrating temperature endurable electrospinning polyimide nonwovens with a copper nanowire‐graphene nanosheet functional layer and a rigid lithium lanthanum zirconium oxide‐polyethylene oxide matrix. Such architecture offers multifold advantages: i) intrinsically high dimensional stability and flame‐retardant capability, ii) excellent electrolyte wettability and effective metal dendritic growth inhibition, and iii) powerful physical blockage/chemical anchoring capability for the shuttled polysulfides. As a consequence, the as constructed lithium–sulfur battery using a pure sulfur cathode displays an outstandingly high discharge capacity of 1402.1 mAh g?1 and a record high cycling stability (approximately average 0.24% capacity decay per cycle within 300 cycles) at 80 °C, outperforming the state‐of‐the‐art results in the literature. Promisingly, a high sulfur mass loading of ≈3.0 mg cm?2 and a record low electrolyte/sulfur ratio of 6.0 are achieved. This functional separator also performs well for a high temperature magnesium–sulfur battery. This work demonstrates a new concept for high performance metal–sulfur battery design and promises safe and durable operation of the next generation energy storage systems.  相似文献   

10.
All‐solid‐state batteries (ASSBs) with silicon anodes are promising candidates to overcome energy limitations of conventional lithium‐ion batteries. However, silicon undergoes severe volume changes during cycling leading to rapid degradation. In this study, a columnar silicon anode (col‐Si) fabricated by a scalable physical vapor deposition process (PVD) is integrated in all‐solid‐state batteries based on argyrodite‐type electrolyte (Li6PS5Cl, 3 mS cm?1) and Ni‐rich layered oxide cathodes (LiNi0.9Co0.05Mn0.05O2, NCM) with a high specific capacity (210 mAh g?1). The column structure exhibits a 1D breathing mechanism similar to lithium, which preserves the interface toward the electrolyte. Stable cycling is demonstrated for more than 100 cycles with a high coulombic efficiency (CE) of 99.7–99.9% in full cells with industrially relevant areal loadings of 3.5 mAh cm?2, which is the highest value reported so far for ASSB full cells with silicon anodes. Impedance spectroscopy revealed that anode resistance is drastically reduced after first lithiation, which allows high charging currents of 0.9 mA cm?2 at room temperature without the occurrence of dendrites and short circuits. Finally, in‐operando monitoring of pouch cells gave valuable insights into the breathing behavior of the solid‐state cell.  相似文献   

11.
The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na‐ion and Li‐ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na‐ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li‐ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The low capacity and poor rate capability of C/Sn anode in Na‐ion batteries is mainly due to the large Na‐ion size, resulting in slow Na‐ion diffusion and large volume change of porous C/Sn composite anode during alloy/dealloy reactions. Understanding of the reaction mechanism between Sn and Na ions will provide insight towards exploring and designing new alloy‐based anode materials for Na‐ion batteries.  相似文献   

12.
The application of lithium (Li) metal anodes in Li metal batteries has been hindered by growth of Li dendrites, which lead to short cycling life. Here a Li‐ion‐affinity leaky film as a protection layer is reported to promote a dendrite‐free Li metal anode. The leaky film induces electrokinetic phenomena to enhance Li‐ion transport, leading to a reduced Li‐ion concentration polarization and homogeneous Li‐ion distribution. As a result, the dendrite‐free Li metal anode during Li plating/stripping is demonstrated even at an extremely high deposition capacity (6 mAh cm?2) and current density (40 mA cm?2) with improved Coulombic efficiencies. A full cell battery with the leaky‐film protected Li metal as the anode and high‐areal‐capacity LiNi0.8Co0.1Mn0.1O2 (NCM‐811) (≈4.2 mAh cm?2) or LiFePO4 (≈3.8 mAh cm?2) as the cathode shows improved cycling stability and capacity retention, even at lean electrolyte conditions.  相似文献   

13.
A NaSICON‐type Li+‐ion conductive membrane with a formula of Li1+ x Y x Zr2? x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid‐electrolyte/separator to suppress polysulfide‐crossover in lithium‐sulfur (Li‐S) batteries. The LYZP membrane with a reasonable Li+‐ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li‐S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li‐S batteries show greatly enhanced cyclability in contrast to the conventional Li‐S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li‐metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g?1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade‐rate of <0.07% per cycle.  相似文献   

14.
Lithium‐air (Li‐air) batteries have become attractive because of their extremely high theoretical energy density. However, conventional Li‐air cells operating with non‐aqueous electrolytes suffer from poor cycle life and low practical energy density due to the clogging of the porous air cathode by insoluble discharge products, contamination of the organic electrolyte and lithium metal anode by moist air, and decomposition of the electrolyte during cycling. These difficulties may be overcome by adopting a cell configuration that consists of a lithium‐metal anode protected from air by a Li+‐ion solid electrolyte and an air electrode in an aqueous catholyte. In this type of configuration, a Li+‐ion conducting “buffer” layer between the lithium‐metal anode and the solid electrolyte is often necessary due to the instability of many solid electrolytes in contact with lithium metal. Based on the type of buffer layer, two different battery configurations are possible: “hybrid” Li‐air batteries and “aqueous” Li‐air batteries. The hybrid and aqueous Li‐air batteries utilize the same battery chemistry and face similar challenges that limit the cell performance. Here, an overview of recent developments in hybrid and aqueous Li‐air batteries is provided and the factors that influence their performance and impede their practical applications, followed by future directions are discussed.  相似文献   

15.
Rechargeable lithium‐based batteries are long considered as the most promising candidates for application in various electronic devices, electric vehicles, and even electrical grids owing to their ultrahigh energy densities. However, to date, metallic lithium‐based batteries are still far from practical applications due to the low Coulombic efficiency and fast capacity decay of lithium anodes. The poor electrochemical performances of metallic lithium anodes are inherently related to random growth of lithium dendrites and infinite volume charge of lithium anodes. In this review, the failure mechanisms of metallic lithium anodes are summarized and ascribed to the unstable and inhomogeneous solid electrolyte interphase, uneven distributions of electric field, and lithium‐ion flux during the lithium plating processes. Correspondingly, efficient strategies for mitigating these problems, including surficial engineering, electric field, and lithium‐ion flux regulation are discussed from the perspective of anode materials. Finally, an outlook is proposed for the design and fabrication of next‐generation rechargeable metallic lithium anodes that aims to address the intrinsic problems of metallic lithium anodes.  相似文献   

16.
Since their commercialization by Sony in 1991, graphite anodes in combination with various cathodes have enabled the widespread success of lithium‐ion batteries (LIBs), providing over 10 billion rechargeable batteries to the global population. Next‐generation nonaqueous alkali metal‐ion batteries, namely sodium‐ion batteries (SIBs) and potassium‐ion batteries (PIBs), are projected to utilize intercalation‐based carbon anodes as well, due to their favorable electrochemical properties. While traditionally graphite anodes have dominated the market share of LIBs, other carbon materials have been investigated, including graphene, carbon nanotubes, and disordered carbons. The relationship between carbon material properties, electrochemical performance, and charge storage mechanisms is clarified for these alkali metal‐ion batteries, elucidating possible strategies for obtaining enhanced cycling stability, specific capacity, rate capability, and safety aspects. As a key component in determining cell performance, the solid electrolyte interphase layer is described in detail, particularly for its dependence on the carbon anode. Finally, battery safety at extreme temperatures is discussed, where carbon anodes are susceptible to dendrite formation, accelerated aging, and eventual thermal runaway. As society pushes toward higher energy density LIBs, this review aims to provide guidance toward the development of sustainable next‐generation SIBs and PIBs.  相似文献   

17.
Developing high‐performance batteries through applying renewable resources is of great significance for meeting ever‐growing energy demands and sustainability requirements. Biomaterials have overwhelming advantages in material abundance, environmental benignity, low cost, and more importantly, multifunctionalities from structural and compositional diversity. Therefore, significant and fruitful research on exploiting various natural biomaterials (e.g., soy protein, chitosan, cellulose, fungus, etc.) for boosting high‐energy lithium‐based batteries by means of making or modifying critical battery components (e.g., electrode, electrolyte, and separator) are reported. In this review, the recent advances and main strategies for adopting biomaterials in electrode, electrolyte, and separator engineering for high‐energy lithium‐based batteries are comprehensively summarized. The contributions of biomaterials to stabilizing electrodes, capturing electrochemical intermediates, and protecting lithium metal anodes/enhancing battery safety are specifically emphasized. Furthermore, advantages and challenges of various strategies for fabricating battery materials via biomaterials are described. Finally, future perspectives and possible solutions for further development of biomaterials for high‐energy lithium‐based batteries are proposed.  相似文献   

18.
The solid electrolyte interphase (SEI) spontaneously formed on anode surfaces as a passivation layer plays a critical role in the lithium dissolution and deposition upon discharge/charge in lithium ion batteries and lithium‐metal batteries. The formation kinetics and failure of the SEI films are the key factors determining the safety, power capability, and cycle life of lithium ion and lithium‐metal batteries. Since SEI films evolve with the volumetric and interfacial changes of anodes, it is technically challenging in experimental study of SEI kinetics. Here operando observations are reported of SEI formation, growth, and failure at a high current density by utilizing a mass‐sensitive Cs‐corrected scanning transmission electron microscopy. The sub‐nano‐scale observations reveal a bilayer hybrid structure of SEI films and demonstrate the radical assisted SEI growth after the SEI thickness beyond the electron tunneling regime. The failure of SEI films is associated with rapid dissolution of inorganic layers when they directly contact with the electrolyte in broken SEI films. The initiation of cracks in SEI films is caused by heterogeneous volume changes of the electrodes during delithiation. These microscopic insights have important implications in understanding SEI kinetics and in developing high‐performance anodes with the formation of robust SEI films.  相似文献   

19.
Safety, nontoxicity, and durability directly determine the applicability of the essential characteristics of the lithium (Li)‐ion battery. Particularly, for the lithium–sulfur battery, due to the low ignition temperature of sulfur, metal lithium as the anode material, and the use of flammable organic electrolytes, addressing security problems is of increased difficulty. In the past few years, two basic electrolyte systems are studied extensively to solve the notorious safety issues. One system is the conventional organic liquid electrolyte, and the other is the inorganic solid‐state or quasi‐solid‐state composite electrolyte. Here, the recent development of engineered liquid electrolytes and design considerations for solid electrolytes in tackling these safety issues are reviewed to ensure the safety of electrolyte systems between sulfur cathode materials and the lithium‐metal anode. Specifically, strategies for designing and modifying liquid electrolytes including introducing gas evolution, flame, aqueous, and dendrite‐free electrolytes are proposed. Moreover, the considerations involving a high‐performance Li+ conductor, air‐stable Li+ conductors, and stable interface performance between the sulfur cathode and the lithium anode for developing all‐solid‐state electrolytes are discussed. In the end, an outlook for future directions to offer reliable electrolyte systems is presented for the development of commercially viable lithium–sulfur batteries.  相似文献   

20.
Mechanically bendable and flexible functionalities are urgently required for next‐generation battery systems that will be included in soft and wearable electronics, active sportswear, and origami‐based deployable space structures. However, it is very difficult to synthesize anode and cathode electrodes that have high energy density and structural reliability under large bending deformation. Here, vanadium oxide (V2O5) and nickel cobalt oxide (NiCo2O4) nanowire‐carbon fabric electrodes for highly flexible and bendable lithium ion batteries are reported. The vanadium oxide and nickel cobalt oxide nanowires were directly grown on plasma‐treated carbon fabric and were used as cathode and anode electrodes in a full cell lithium ion battery. Most importantly, a pre‐lithiation process was added to the nickel cobalt oxide nanowire anode to facilitate the construction of a full cell using symmetrically‐architectured nanowire‐carbon fabric electrodes. The highly bendable full cell based on poly(ethylene oxide) polymer electrolyte and room temperature ionic liquid shows high energy density of 364.2 Wh kg?1 at power density of 240 W kg?1, without significant performance degradation even under large bending deformations. These results show that vanadium oxide and lithiated nickel cobalt oxide nanowire‐carbon fabrics are a good combination for binder‐free electrodes in highly flexible lithium‐ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号