首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MoS2 has emerged as a promising alternative electrocatalyst for the hydrogen evolution reaction (HER) due to high intrinsic per‐site activity on its edge sites and S‐vacancies. However, a significant challenge is the limited density of such sites. Reducing the size and layer number of MoS2 and vertically aligning them would be an effective way to enrich and expose such sites for HER. Herein, a facile self‐limited on‐site conversion strategy for synthesizing monolayer MoS2 in a couple of nanometers which are highly dispersed and vertically aligned on 3D porous carbon sheets is reported. It is discovered that the preformation of well‐dispersed MoO3 nanodots in 1–2 nm as limited source is the key for the fabrication of such an ultrasmall MoS2 monolayer. As indicated by X‐ray photoelectron spectroscopy and electron spin resonance data, these ultrasmall MoS2 monolayers are rich in accessible S‐edge sites and vacancies and the smaller MoS2 monolayers the more such sites they have, leading to enhanced electrocatalytic activity with a low overpotential of 126 mV at 10 mA cm?2 and 140 mV at 100 mA mg?1 for HER. This state‐of‐the‐art performance for MoS2 electrocatalysts enables the present strategy as a new avenue for exploring well‐dispersed ultrasmall nanomaterials as efficient catalysts.  相似文献   

2.
To enable an efficient and cost‐effective electrocatalytic N2 reduction reaction (NRR) the development of an electrocatalyst with a high NH3 yield and good selectivity is required. In this work, Ti3C2Tx MXene‐derived quantum dots (Ti3C2Tx QDs) with abundant active sites enable the development of efficient NRR electrocatalysts. Given surface functional groups play a key role on the electrocatalytic performance, density functional theory calculations are first conducted, clarifying that hydroxyl groups on Ti3C2Tx offer excellent NRR activity. Accordingly, hydroxyl‐rich Ti3C2Tx QDs (Ti3C2OH QDs) are synthesized as NRR catalysts by alkalization and intercalation. This material offers an NH3 yield and Faradaic efficiency of 62.94 µg h?1 mg?1cat. and 13.30% at ?0.50 V, respectively, remarkably higher than reported MXene catalysts. This work demonstrates that MXene catalysts can be mediated through the optimization of both QDs sizes and functional groups for efficient ammonia production at room temperature.  相似文献   

3.
The low hydrogen adsorption free energy and strong acid/alkaline resistance of layered MoS2 render it an excellent pH‐universal electrocatalyst for hydrogen evolution reaction (HER). However, the catalytic activity is dominantly suppressed by its limited active‐edge‐site density. Herein, a new strategy is reported for making a class of strongly coupled MoS2 nanosheet–carbon macroporous hybrid catalysts with engineered unsaturated sulfur edges for boosting HER catalysis by controlling the precursor decomposition and subsequent sodiation/desodiation. Both surface chemical state analysis and first‐principles calculations verify that the resultant catalysts exhibit a desirable valence‐electron state with high exposure of unsaturated sulfur edges and an optimized hydrogen adsorption free energy, significantly improving the intrinsic HER catalytic activity. Such an electrocatalyst exhibits superior and stable catalytic activity toward HER with small overpotentials of 136 mV in 0.5 m H2SO4 and 155 mV in 1 m KOH at 10 mA cm?2, which is the best report for MoS2–C hybrid electrocatalysts to date. This work paves a new avenue to improve the intrinsic catalytic activity of 2D materials for hydrogen generation.  相似文献   

4.
The production of ammonia (NH3) from molecular dinitrogen (N2) under mild conditions is one of the most attractive topics in the field of chemistry. Electrochemical reduction of N2 is promising for achieving clean and sustainable NH3 production with lower energy consumption using renewable energy sources. To date, emerging electrocatalysts for the electrochemical reduction of N2 to NH3 at room temperature and atmospheric pressure remain largely underexplored. The major challenge is to achieve both high catalytic activity and high selectivity. Here, the recent progress on the electrochemical nitrogen reduction reaction (NRR) at ambient temperature and pressure from both theoretical and experimental aspects is summarized, aiming at extracting instructive perceptions for future NRR research activities. The prevailing theories and mechanisms for NRR as well as computational screening of promising materials are presented. State‐of‐the‐art heterogeneous electrocatalysts as well as rational design of the whole electrochemical systems for NRR are involved. Importantly, promising strategies to enhance the activity, selectivity, efficiency, and stability of electrocatalysts toward NRR are proposed. Moreover, ammonia determination methods are compared and problems relating to possible ammonia contamination of the system are mentioned so as to shed fresh light on possible standard protocols for NRR measurements.  相似文献   

5.
As an alternative approach for N2 fixation under milder conditions, electrocatalytic nitrogen reduction reaction (NRR) represents a very attractive strategy for sustainable development and N2 cycle to store and utilize energy from renewable sources. However, the research on NRR electrocatalysts still mainly focuses on noble metals, while, high costs and limited resources greatly restrict their large‐scale applications. Herein, as a proof‐of‐concept experiment, taking PdCu amorphous nanocluster anchored on reduced graphene oxide (rGO) as NRR catalysts, the optimum Pd0.2Cu0.8/rGO composite presents a synergistic effect and shows superior electrocatalytic performance toward NRR under ambient conditions (yield: 2.80 µg h?1 mgcat.?1 at ?0.2 V vs reversible hydrogen electrode), which is much higher than that of monometallic, especially noble metal, counterparts. The superior catalytic performance of alloy catalysts with low noble metal loading would strongly spur interest toward more researches on NRR catalysts in the future.  相似文献   

6.
The proper choice of nonprecious transition metals as single atom catalysts (SACs) remains unclear for designing highly efficient electrocatalysts for hydrogen evolution reaction (HER). Herein, reported is an activity correlation with catalysts, electronic structure, in order to clarify the origin of reactivity for a series of transition metals supported on nitrogen‐doped graphene as SACs for HER by a combination of density functional theory calculations and electrochemical measurements. Only few of the transition metals (e.g., Co, Cr, Fe, Rh, and V) as SACs show good catalytic activity toward HER as their Gibbs free energies are varied between the range of –0.20 to 0.30 eV but among which Co‐SAC exhibits the highest electrochemical activity at 0.13 eV. Electronic structure studies show that the energy states of active valence dz2 orbitals and their resulting antibonding state determine the catalytic activity for HER. The fact that the antibonding state orbital is neither completely empty nor fully filled in the case of Co‐SAC is the main reason for its ideal hydrogen adsorption energy. Moreover, the electrochemical measurement shows that Co‐SAC exhibits a superior hydrogen evolution activity over Ni‐SAC and W‐SAC, confirming the theoretical calculation. This systematic study gives a fundamental understanding about the design of highly efficient SACs for HER.  相似文献   

7.
The electrochemical nitrogen reduction reaction (NRR) is a promising alternative to the energy‐intensive Haber–Bosch process for ammonia synthesis. Among the possible electrocatalysts, bismuth‐based materials have shown unique NRR properties due to their electronic structures and poor hydrogen evolution activity. However, identification of the active sites and reaction mechanism is still difficult due to structural and chemical changes under reaction potentials. Herein, in situ Raman spectroscopy, complemented by electron microscopy, is employed to investigate the structural and chemical transformation of the Bi species during the NRR. Nanorod‐like bismuth‐based metal–organic frameworks are reduced in situ and fragment into densely contacted Bi0 nanoparticles under the applied potentials. The fragmented Bi0 nanoparticles exhibit excellent NRR performance in both neutral and acidic electrolytes, with an ammonia yield of 3.25 ± 0 .08 µg cm?2 h?1 at ?0.7 V versus reversible hydrogen electrode and a Faradaic efficiency of 12.11 ± 0.84% at ?0.6 V in 0.10 m Na2SO4. Online differential electrochemical mass spectrometry detects the production of NH3 and N2H2 during NRR, suggesting a possible pathway through two‐step reduction and decomposition. This work highlights the importance of monitoring and optimizing the electronic and geometric structures of the electrocatalysts under NRR conditions.  相似文献   

8.
Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one‐step hydrothermal method is reported. The synergistic effects between the layered MoS2 nanosheets and N‐doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS2/N‐RGO‐180 exhibits the excellent catalytic activity with a low onset potential of ?5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec?1, a high exchange current density of 7.4 × 10?4 A cm?2, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS2/N‐RGO‐180 nanocomposite is superior to the most reported MoS2‐based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low‐cost MoS2‐based electrocatalysts with the extraordinary HER performance is presented.  相似文献   

9.
To achieve the energy‐effective ammonia (NH3) production via the ambient‐condition electrochemical N2 reduction reaction (NRR), it is vital to ingeniously design an efficient electrocatalyst assembling the features of abundant surface deficiency, good dispersibility, high conductivity, and large surface specific area (SSA) via a simple way. Inspired by the fact that the MXene contains thermodynamically metastable marginal transition metal atoms, the oxygen‐vacancy‐rich TiO2 nanoparticles (NPs) in situ grown on the Ti3C2Tx nanosheets (TiO2/Ti3C2Tx) are prepared via a one‐step ethanol‐thermal treatment of the Ti3C2Tx MXene. The oxygen vacancies act as the main active sites for the NH3 synthesis. The highly conductive interior untreated Ti3C2Tx nanosheets could not only facilitate the electron transport but also avoid the self‐aggregation of the TiO2 NPs. Meanwhile, the TiO2 NPs generation could enhance the SSA of the Ti3C2Tx in return. Accordingly, the as‐prepared electrocatalyst exhibits an NH3 yield of 32.17 µg h?1 mg?1cat. at ?0.55 V versus reversible hydrogen electrode (RHE) and a remarkable Faradaic efficiency of 16.07% at ?0.45 V versus RHE in 0.1 m HCl, placing it as one of the most promising NRR electrocatalysts. Moreover, the density functional theory calculations confirm the lowest NRR energy barrier (0.40 eV) of TiO2 (101)/Ti3C2Tx compared with Ti3C2Tx or TiO2 (101) alone.  相似文献   

10.
Recently, defect engineering has been used to intruduce half‐metallicity into selected semiconductors, thereby significantly enhancing their electrical conductivity and catalytic/electrocatalytic performance. Taking inspiration from this, we developed a novel bifunctional electrode consisting of two monolayer thick manganese dioxide (δ‐MnO2) nanosheet arrays on a nickel foam, using a novel in‐situ method. The bifunctional electrode exposes numerous active sites for electrocatalytic rections and displays excellent electrical conductivity, resulting in strong performance for both HER and OER. Based on detailed structure analysis and density functional theory (DFT) calculations, the remarkably OER and HER activity of the bifunctional electrode can be attributed to the ultrathin δ‐MnO2 nanosheets containing abundant oxygen vacancies lead to the formation od Mn3+ active sites, which give rise to half‐metallicity properties and strong H2O adsorption. This synthetic strategy introduced here represents a new method for the development of non‐precious metal Mn‐based electrocatalysts for eddicient energy conversion.  相似文献   

11.
Searching for cost‐effective and high‐performance electrocatalysts for hydrogen production is of paramount importance. Herein, nickel‐copper (NiCu) alloy nanoparticles are encapsulated into graphitic shells via an ambient‐pressure chemical vapor deposition process. The resulting carbon‐encapsulated NiCu (denoted as NiCu@C) composite possesses a well‐defined core–shell structure with tunable thicknesses of the shells and is examined as electrocatalysts for the hydrogen evolution reaction (HER) in acidic, neutral, and alkaline solutions. Electrochemical measurements indicate that the activity of the NiCu@C highly depends on the thickness of the shell. Single‐layered graphene encapsulated NiCu nanoparticles show remarkable HER activity and durability. To obtain a current density of 10 mA cm?2, overpotentials of 48, 164, and 74 mV are needed in electrolyte solutions with pH = 0, 7, and 14, respectively. Such low overpotentials render the composite as one of the most active nonprecious electrocatalysts. Accelerated durability tests demonstrate that the NiCu@C catalysts exhibit excellent stability. Density function theory calculations are conducted to investigate the electronic structures of the NiCu@C. It is found that the representative Ni43Cu12@C240 model shows an ideal adsorption energy of hydrogen (?0.03 eV), manifesting its high HER activity.  相似文献   

12.
The combination of precious metals with non‐noble metals is an effective way to develop highly efficient, stable, and low cost electrocatalysts for overall water splitting. Herein, RhCu nanotubes (NTs) with rich structural defects are successfully synthesized by a mixed‐solvent strategy, which display superior activity and excellent stability for both the hydrogen evolution reaction (HER) and oxygen evolution reaction in all pH values. In particular, it only needs 8, 12, and 57 mV to deliver the current density of 10 mA cm?2 for HER in alkaline, acidic, and neutral conditions, respectively. Experiments combined with density functional theory (DFT) calculations reveal that the exposure of a suitable composition of a highly active Rh3Cu1 alloy phase through acid etching is the key to improve electrocatalytic performance, since it weakens the adsorption free energy of atomic oxygen and hydrogen, as well as facilitating the dissociation of water molecules. In addition, the structural defects can also boost the catalytic performance because the adsorption of reactants can be largely enhanced. The results provide a simple method to prepare alloy NTs as highly efficient electrocatalysts for overall water splitting in all pH values.  相似文献   

13.
MoS2 has drawn great attention as a promising Pt‐substituting catalyst for the hydrogen evolution reaction (HER). This work utilizes H2 as the structure directing agent (SDA) to in situ synthesize a range of Co‐MoS2n (n = 0, 0.5, 1.0, 1.4, 2.0) with expanded interlayer spacings (d = 9.2 – 11.1 Å), which significantly boost their HER activities. The Co‐MoS2‐1.4 with an interlayer spacing of 10.3 Å presents an extremely low overpotential of 56 mV (at 10 mA cm?2) and a Tafel slope of 32 mV dec?1, which is superior than most reported MoS2‐based catalysts. Density function theory calculations are used to gain insights that i) the H2 can be dissociatively adsorbed on MoS2 and greatly affect the related surface free energy by regulating the interlayer spacing; ii) the expanded interlayer spacing can significantly decrease the absolute value of ΔGH, thereby leading to greatly promoted HER activity. Additionally, the large amounts of 1T phase (73.9–79.2%) and Co‐Mo‐S active sites (40.9–91.3%) also contribute to the enhanced HER activity of the synthesized samples. Overall, a simple new strategy for in situ synthesis of Co‐MoS2 with an expanded interlayer spacing is proposed, which sheds light on other 2D energy material designs.  相似文献   

14.
Herein, the authors explicitly reveal the dual‐functions of N dopants in molybdenum disulfide (MoS2) catalyst through a combined experimental and first‐principles approach. The authors achieve an economical, ecofriendly, and most efficient MoS2‐based hydrogen evolution reaction (HER) catalyst of N‐doped MoS2 nanosheets, exhibiting an onset overpotential of 35 mV, an overpotential of 121 mV at 100 mA cm?2 and a Tafel slope of 41 mV dec?1. The dual‐functions of N dopants are (1) activating the HER catalytic activity of MoS2 S‐edge and (2) enhancing the conductivity of MoS2 basal plane to promote rapid charge transfer. Comprehensive electrochemical measurements prove that both the amount of active HER sites and the conductivity of N‐doped MoS2 increase as a result of doping N. Systematic first‐principles calculations identify the active HER sites in N‐doped MoS2 edges and also illustrate the conducting charges spreading over N‐doped basal plane induced by strong Mo 3d –S 2p –N 2p hybridizations at Fermi level. The experimental and theoretical research on the efficient HER catalysis of N‐doped MoS2 nanosheets possesses great potential for future sustainable hydrogen production via water electrolysis and will stimulate further development on nonmetal‐doped MoS2 systems to bring about novel high‐performance HER catalysts.  相似文献   

15.
Developing electrocatalysts with high compatibility to the reaction systems with complicated chemical properties represents an important frontier of catalyst design. Herein, a strategy by engineering a multifunctional collaborative catalytic interface to propel the hydrogen evolution reaction (HER) in the full pH range and seawater is reported. Collaborative catalytic interfaces among MXene, bimetallic carbide, and hybridized carbon are demonstrated to afford overall enhancement in electrical conductivity, exposure of reactive sites, water dissociation kinetics, H+/water adsorption, and intermediate H binding capability, which satisfy highly variable chemical environment for HER under different pH conditions. Therefore, the HER performance of resultant electrocatalysts can compete with commercial Pt/C in 0.5 m H2SO4 or 1.0 m KOH but outperform it under pH 2.2–11.2. They also show exceptional performance for HER in natural seawater with stringent requirements in catalytic activity and stability, exhibiting the best combination of Pt‐like activity, long durability (225 h, 64 times that of Pt/C), and 98% Faradaic efficiency, comparable with commercial Pt/C and the best documented electrocatalysts by far. This work may shed fresh light into the design of effective electrocatalytic interface for regulating the energy chemistry over wide operation conditions, and also inspires the exploration of hydrogen energy utilization technologies and beyond.  相似文献   

16.
The search for Pt‐free electrocatalysts exceeding pH‐universal hydrogen evolution reaction (HER) activities when compared to the state‐of‐the‐art commercial Pt/C is highly desirable for the development of renewable energy conversion systems but still remains a huge challenge. Here a colloidal synthesis of monodisperse Rh2P nanoparticles with an average size of 2.8 nm and their superior catalytic activities for pH‐universal HER are reported. Significantly, the Rh2P catalyst displays remarkable HER performance with overpotentials of 14, 30, and 38 mV to achieve 10 mA cm?2 in 0.5 m H2SO4, 1.0 m KOH, and 1.0 m phosphate‐buffered saline, respectively, exceeding almost all the documented electrocatalysts, including the commercial 20 wt% Pt/C. Density functional theory calculations reveal that the introduction of P into Rh can weaken the H adsorption strength of Rh2P to nearly zero, beneficial for boosting HER performance.  相似文献   

17.
Water splitting is a promising technology for sustainable conversion of hydrogen energy. The rational design of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional electrocatalysts with superior activity and stability in the same electrolyte is the key to promoting their large‐scale applications. Herein, an ultralow Ru (1.08 wt%) transition metal phosphide on nickel foam (Ru–MnFeP/NF) derived from Prussian blue analogue, that effectively drivies both the OER and the HER in 1 m KOH, is reported. To reach 20 mA cm?2 for OER and 10 mA cm?2 for HER, the Ru–MnFeP/NF electrode only requires overpotentials of 191 and 35 mV, respectively. Such high electrocatalytic activity exceeds most transition metal phosphides for the OER and the HER, and even reaches Pt‐like HER electrocatalytic levels. Accordingly, it significantly accelerates full water splitting at 10 mA cm?2 with 1.470 V, which outperforms that of the integrated RuO2 and Pt/C couple electrode (1.560 V). In addition, the extremely long operational stability (50 h) and the successful demonstration of a solar‐to‐hydrogen generation system through full water splitting provide more flexibility for large‐scale applications of Ru–MnFeP/NF catalysts.  相似文献   

18.
The oxygen evolution reaction (OER) is a bottleneck process for water splitting and finding highly efficient, durable, low‐cost, and earth‐abundant electrocatalysts is still a major challenge. Here a sulfur‐treated Fe‐based metal–organic‐framework is reported as a promising electrocatalyst for the OER, which shows a low overpotential of 218 mV at the current density of 10 mA cm?2 and exhibits a very low Tafel slope of 36.2 mV dec?1 at room temperature. It can work on high current densities of 500 and 1000 mA cm?2 at low overpotentials of 298 and 330 mV, respectively, by keeping 97% of its initial activity after 100 h. Notably, it can achieve 1000 mA cm?2 at 296 mV with a good stability at 50 °C, fully fitting the requirements for large‐scale industrial water electrolysis. The high catalytic performance can be attributed to the thermocatalytic processes of H+ capture by –SO3 groups from *OH or *OOH species, which cascades to the electrocatalytic pathway and then significantly reduces the OER overpotentials.  相似文献   

19.
2D transition metal‐dichalcogenides are emerging as efficient and cost‐effective electrocatalysts for the hydrogen evolution reaction (HER). However, only the edge sites of their trigonal prismatic phase show HER‐electrocatalytic properties, while the basal plane, which is absent of defective/unsaturated sites, is inactive. Herein, the authors tackle the key challenge of increasing the number of electrocatalytic sites by designing and engineering heterostructures composed of single‐/few‐layer MoSe2 flakes and carbon nanomaterials (graphene or single‐wall carbon nanotubes) produced by solution processing. The electrochemical coupling between the materials that comprise the heterostructure effectively enhances the HER‐electrocatalytic activity of the native MoSe2 flakes. The optimization of the mass loading of MoSe2 flakes and their electrode assembly via monolithic heterostructure stacking provides a cathodic current density of 10 mA cm?2 at overpotential of 100 mV, a Tafel slope of 63 mV dec?1, and an exchange current density (j0) of 0.203 µA cm?2. In addition, thermal and chemical treatments are exploited to texturize the basal planes of the MoSe2 flakes (through Se‐vacancies creation) and to achieve in situ semiconducting‐to‐metallic phase conversion, respectively, thus they activate new HER‐electrocatalytic sites. The as‐engineered electrodes show a 4.8‐fold enhancement of j0 and a decrease in the Tafel slope to 54 mV dec?1.  相似文献   

20.
The controllable synthesis of single‐crystallized iron‐cobalt carbonate hydroxide nanosheets array on 3D conductive Ni foam (FCCH/NF) as a monolithic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional electrocatalyst for full water splitting is described. The results demonstrate that the incorporation of Fe can effectively tune the morphology, composition, electronic structure, and electrochemical active surface area of the electrocatalysts, thus greatly enhancing the intrinsic electrocatalytic activity. The optimal electrocatalyst (F0.25C1CH/NF) can deliver 10 and 1000 mA cm?2 at very small overpotentials of 77 and 256 mV for HER and 228 and 308 mV for OER in 1.0 m KOH without significant interference from gas evolution. The F0.25C1CH‐based two‐electrode alkaline water electrolyzer only requires cell voltages of 1.45 and 1.52 V to achieve current densities of 10 and 500 mA cm?2. The results demonstrate that such fascinating electrocatalytic activity can be ascribed to the increase in the catalytic active surface area, facilitated electron and mass transport properties, and the synergistic interactions because of the incorporation of Fe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号