首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ti, V, Cr, Nb, and Mo are found to be effective at increasing the Seebeck coefficient and power factor of n‐type PbSe at temperatures below 600 K. It is found that the higher Seebeck coefficients and power factors are due to higher Hall mobility ≈1000 cm2 V?1s?1 at lower carrier concentration. A larger average ZT value (relevant for applications) can be obtained by an optimization of carrier concentration to ≈1018–1019 cm?3. Even though the highest room temperature power factor ≈3.3 × 10?3 W m?1 K?2 is found in 1 at% Mo‐doped PbSe, the highest ZT is achieved in Cr‐doped PbSe. Combined with the lower thermal conductivity, ZT is improved to ≈0.4 at room temperature and peak ZTs of ≈1.0 are observed at ≈573 K for Pb0.9925Cr0.0075Se and ≈673 K for Pb0.995Cr0.005Se. The calculated device efficiency of Pb0.995Cr0.005Se is as high as ≈12.5% with cold side 300 K and hot side 873 K, higher than those of all the n‐type PbSe materials reported in the literature.  相似文献   

2.
The layered oxyselenide BiCuSeO system is known as one of the high‐performance thermoelectric materials with intrinsically low thermal conductivity. By employing atomic, nano‐ to mesoscale structural optimizations, low thermal conductivity coupled with enhanced electrical transport properties can be readily achieved. Upon partial substitution of Bi3+ by Ca2+ and Pb2+, the thermal conductivity can be reduced to as low as 0.5 W m?1 K?1 at 873 K through dual‐atomic point‐defect scattering, while a high power factor of ≈1 × 10?3 W cm?1 K?2 is realized over a broad temperature range from 300 to 873 K. The synergistically optimized power factor and intrinsically low thermal conductivity result in a high ZT value of ≈1.5 at 873 K for Bi0.88Ca0.06Pb0.06CuSeO, a promising candidate for high‐temperature thermoelectric applications. It is envisioned that the all‐scale structural optimization is critical for optimizing the thermoelectricity of quaternary compounds.  相似文献   

3.
Iodine‐doped n‐type SnSe polycrystalline by melting and hot pressing is prepared. The prepared material is anisotropic with a peak ZT of ≈0.8 at about 773 K measured along the hot pressing direction. This is the first report on thermoelectric properties of n‐type Sn chalcogenide alloys. With increasing content of iodine, the carrier concentration changed from 2.3 × 1017 cm?3 (p‐type) to 5.0 × 1015 cm?3 (n‐type) then to 2.0 × 1017 cm?3 (n‐type). The decent ZT is mainly attributed to the intrinsically low thermal conductivity due to the high anharmonicity of the chemical bonds like those in p‐type SnSe. By alloying with 10 at% SnS, even lower thermal conductivity and an enhanced Seebeck coefficient were achieved, leading to an increased ZT of ≈1.0 at about 773 K measured also along the hot pressing direction.  相似文献   

4.
The Ag and In co‐doped PbTe, AgnPb100InnTe100+2n (LIST), exhibits n‐type behavior and features unique inherent electronic levels that induce self‐tuning carrier density. Results show that In is amphoteric in the LIST, forming both In3+ and In1+ centers. Through unique interplay of valence fluctuations in the In centers and conduction band filling, the electron carrier density can be increased from ≈3.1 × 1018 cm?3 at 323 K to ≈2.4 × 1019 cm?3 at 820 K, leading to large power factors peaking at ≈16.0 µWcm?1 K?2 at 873 K. The lone pair of electrons from In+ can be thermally continuously promoted into the conduction band forming In3+, consistent with the amphoteric character of In. Moreover, with rising temperature, the Fermi level shifts into the conduction band, which enlarges the optical band gap based on the Moss–Burstein effect, and reduces bipolar diffusion and thermal conductivity. Adding extra Ag in LIST improves the electrical transport properties and meanwhile lowers the lattice thermal conductivity to ≈0.40 Wm?1 K?1. The addition of Ag creates spindle‐shaped Ag2Te nanoprecipitates and atomic‐scale interstitials that scatter a broader set of phonons. As a result, a maximum ZT value ≈1.5 at 873 K is achieved in Ag6Pb100InTe102 (LIST).  相似文献   

5.
PbTe1?x Sex ‐2%Na‐y%SrTe system is investigated and a high maximum ZT of 2.3 at 923 K for PbTe0.85Se0.15‐2%Na‐4%SrTe is reported. This is achieved by performing electronic band structures modifications as well as all‐scale hierarchical structuring and combining the two effects. It is found that high ZTs in PbTe0.85Se0.15‐2%Na‐4%SrTe are possible at all temperature from 300 to 873 K with an average ZTave of 1.23. The high performance in PbTe1?x Sex ‐2%Na‐y%SrTe can be achieved by either choosing PbTe‐2Na‐4SrTe or PbTe0.85Se0.15‐2Na as a matrix. At room temperature the carrier mobility shows negligible variations as SrTe fraction is increased, however the lattice thermal conductivity is significantly reduced from ≈1.1 to ≈0.82 W m?1 K?1 when 5.0% SrTe is added, correspondingly, the lattice thermal conductivity at 923 K decreases from ≈0.59 to ≈0.43 W m?1 K?1. The power factor maxima of PbTe1?x Sex ‐2Na‐4SrTe shift systematically to higher temperature with rising Se fractions due to bands divergence. The maximum power factors reach ≈27, ≈30, ≈31 μW cm?1 K?2 for the x = 0, 0.05, and 0.15 samples peak at 473, 573, and 623 K, respectively. The results indicate that ZT can be increased by synergistic integration of band structure engineering and all‐scale hierarchical architectures.  相似文献   

6.
Despite the unfavorable band structure with twofold degeneracy at the valence band maximum, MgAgSb is still an excellent p‐type thermoelectric material for applications near room temperature. The intrinsically weak electron–phonon coupling, reflected by the low deformation potential Edef ≈ 6.3 eV, plays a crucial role in the relatively high power factor of MgAgSb. More importantly, Li is successfully doped into Mg site to tune the carrier concentration, leading to the resistivity reduction by a factor of 3 and a consequent increase in power factor by ≈30% at 300 K. Low lattice thermal conductivity can be simultaneously achieved by all‐scale hierarchical phonon scattering architecture including high density of dislocations and nanoscale stacking faults, nanoinclusions, and multiscale grain boundaries. Collectively, much higher average power factor ≈25 μW cm?1 K?2 with a high average ZT ≈ 1.1 from 300 to 548 K is achieved for 0.01 Li doping, which would result in a high output power density ≈1.56 W cm?2 and leg efficiency ≈9.2% by calculations assuming cold‐side temperature Tc = 323 K, hot‐side temperature Th = 548 K, and leg length = 2 mm.  相似文献   

7.
PbSe is an attractive thermoelectric material due to its favorable electronic structure, high melting point, and lower cost compared to PbTe. Herein, the hitherto unexplored alloys of PbSe with NaSbSe2 (NaPbmSbSem+2) are described and the most promising p‐type PbSe‐based thermoelectrics are found among them. Surprisingly, it is observed that below 500 K, NaPbmSbSem+2 exhibits unorthodox semiconducting‐like electrical conductivity, despite possessing degenerate carrier densities of ≈1020 cm?3. It is shown that the peculiar behavior derives from carrier scattering by the grain boundaries. It is further demonstrated that the high solubility of NaSbSe2 in PbSe augments both the thermoelectric properties while maintaining a rock salt structure. Namely, density functional theory calculations and photoemission spectroscopy demonstrate that introduction of NaSbSe2 lowers the energy separation between the L‐ and Σ‐valence bands and enhances the power factors under 700 K. The crystallographic disorder of Na+, Pb2+, and Sb3+ moreover provides exceptionally strong point defect phonon scattering yielding low lattice thermal conductivities of 1–0.55 W m‐1 K‐1 between 400 and 873 K without nanostructures. As a consequence, NaPb10SbSe12 achieves maximum ZT ≈1.4 near 900 K when optimally doped. More importantly, NaPb10SbSe12 maintains high ZT across a broad temperature range, giving an estimated record ZTavg of ≈0.64 between 400 and 873 K, a significant improvement over existing p‐type PbSe thermoelectrics.  相似文献   

8.
In this study, a record high figure of merit (ZT) of ≈1.1 at 773 K is reported in n‐type highly distorted Sb‐doped SnSe microplates via a facile solvothermal method. The pellets sintered from the Sb‐doped SnSe microplates show a high power factor of ≈2.4 µW cm?1 K?2 and an ultralow thermal conductivity of ≈0.17 W m?1 K?1 at 773 K, leading a record high ZT. Such a high power factor is attributed to a high electron concentration of 3.94 × 1019 cm?3 via Sb‐enabled electron doping, and the ultralow thermal conductivity derives from the enhanced phonon scattering at intensive crystal defects, including severe lattice distortions, dislocations, and lattice bent, observed by detailed structural characterizations. This study fills in the gaps of fundamental doping mechanisms of Sb in SnSe system, and provides a new perspective to achieve high thermoelectric performance in n‐type polycrystalline SnSe.  相似文献   

9.
Combining high energy ball‐milling and hot‐pressing, significant enhancements of the thermoelectric figure‐of‐merit (ZT) have been reported for p‐type Bi0.4Sb1.6Te3 nanocomposites. However, applying the same technique to n‐type Bi2Te2.7Se0.3 showed no improvement on ZT values, due to the anisotropic nature of the thermoelectric properties of n‐type Bi2Te2.7Se0.3. Even though texturing was effective in improving peak ZT of Bi2Te2.7Se0.3 from 0.85 to 1.04, reproducibility from batch to batch remains unsatisfactory. Here, we show that good reproducibility can be achieved by introducing an optimal concentration of 0.01 copper (Cu) per Bi2Te2.7Se0.3 to make Cu0.01Bi2Te2.7Se0.3 samples. A peak ZT value of 0.99 was achieved in Cu0.01Bi2Te2.7Se0.3 samples without texturing. With texturing by re‐pressing, the peak ZT was increased to 1.06. Aging in air for over 5 months did not deteriorate but further improved the peak ZT to 1.10. The mechanism by which copper improves the reproducibility, enhances the carrier mobility, and reduces the lattice thermal conductivity is also discussed.  相似文献   

10.
1‐2‐2‐type Zintl phase compounds have promising thermoelectric properties because of their complex crystal structures and multiple valence‐band structures. In this work, a series of single phase (Yb0.9Mg0.1)MgxZn2?xSb2 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) compounds are prepared by alloying YbZn2Sb2 with 10 at% MgZn2Sb2 and different amounts of YbMg2Sb2. The incorporation of Mg at the Yb site, as well as at the Zn site, not only leads to an effective orbital alignment confirmed by the dramatically enhanced density of states effective mass and Seebeck coefficients, but also increases the point defect scattering, contributing to a low lattice thermal conductivity ≈0.54 W m?1 K?1 at 773 K. Combined with the optimization of the carrier concentration by Ag doping at the Zn site, a highest ZT value ≈1.5 at 773 K is achieved in (Yb0.9Mg0.1)Mg0.8Zn1.2Ag0.002Sb2, which is higher than that of all the previously reported 1‐2‐2‐type Zintl phase compounds.  相似文献   

11.
It is reported that electron doped n‐type SnSe2 nanoplates show promising thermoelectric performance at medium temperatures. After simultaneous introduction of Se deficiency and Cl doping, the Fermi level of SnSe2 shifts toward the conduction band, resulting in two orders of magnitude increase in carrier concentration and a transition to degenerate transport behavior. In addition, all‐scale hierarchical phonon scattering centers, such as point defects, nanograin boundaries, stacking faults, and the layered nanostructures, cooperate to produce very low lattice thermal conductivity. As a result, an enhanced in‐plane thermoelectric figure of merit ZTmax of 0.63 is achieved for a 1.5 at% Cl doped SnSe1.95 pellet at 673 K, which is much higher than the corresponding in‐plane ZT of pure SnSe2 (0.08).  相似文献   

12.
The effect of Bi (semimetal) nanoinclusions in nanostructured Bi2Te3 matrices is investigated. Bismuth nanoparticles synthesized by a low temperature solvothermal method are incorporated into Bi2Te3 matrix phases, synthesized by planetary ball milling. High density pellets of the Bi nanoparticle/Bi2Te3 nanocomposites are created by hot pressing the powders at 200 °C and 100 MPa. The effect of different volume fractions (0–7%) of Bi semimetal nanoparticles on the Seebeck coefficient, electrical conductivity, thermal conductivity and carrier concentration is reported. Our results show that the incorporation of semimetal nanoparticles results in a reduction in the lattice thermal conductivity in all the samples. A significant enhancement in power factor is observed for Bi nanoparticle volume fraction of 5% and 7%. We show that it is possible to reduce the lattice thermal conductivity and increase the power factor resulting in an increase in figure of merit by a factor of 2 (from ZT = 0.2 to 0.4). Seebeck coefficient and electrical conductivity as a function of carrier concentration data are consistent with the electron filtering effect, where low‐energy electrons are preferentially scattered by the barrier potentials set up at the semimetal nanoparticle/semiconductor interfaces.  相似文献   

13.
Half‐Heusler (HH) alloys are among the best promising thermoelectric (TE) materials applicable for the middle‐to‐high temperature power generation. Despite of the large thermoelectric power factor and decent figure‐of‐merit ZT (≈1), their broad applications and enhancement on TE performance are limited by the high intrinsic lattice thermal conductivity (κL) due to insufficiencies of phonon scattering mechanisms, and the fewer powerful strategies associated with the microstructural engineering for HH materials. This study reports a bottom‐up nanostructure synthesis approach for these HH materials based on the displacement reaction between metal chlorides/bromides and magnesium (or lithium), followed by vacuum‐assisted spark plasma sintering process. The samples are featured with dense dislocation arrays at the grain boundaries, leading to a minimum κL of ≈1 W m?1 K?1 at 900 K and one of the highest ZT (≈1) and predicted η (≈11%) for n‐type Hf0.25Zr0.75NiSn0.97Sb0.03. Further manipulation on the dislocation defects at the grain boundaries of p‐type Nb0.8Ti0.2FeSb leads to enhanced maximum power factor of 47 × 10?4 W m?1 K?2 and the predicted η of ≈7.5%. Moreover, vanadium substitution in FeNb0.56V0.24Ti0.2Sb significantly promotes the η to ≈11%. This strategy can be extended to a broad range of advanced alloys and compounds for improved properties.  相似文献   

14.
p‐type CuInTe2 thermoelectric (TE) materials are of great interest for applications in the middle temperature range because of their environmentally benign chemical component and stable phase under operating temperatures. In order to enhance their TE performance to compete with the Pb based TE materials, a progressive regulation of electrical and thermal transport properties has been employed in this work. Anion P and Sb substitution is used to tune the electrical transport properties of CuInTe2 for the first time, leading to a sharp enhancement in power factor due to the reduction of electrical resistivity by acceptor doping and the increase of the Seebeck coefficient resulted from the improvement of density of states. Concurrently, In2O3 nanoinclusions are introduced through an in situ oxidation between CuInTe2 and ZnO additives, rendering a great reduction in the thermal conductivity of CuInTe2 by the extra phonon scattering. Then, by integrating the anion substitution and nanoinclusions, a high power factor of 1445 μW m?1 K?2 and enhanced ZT of 1.61 at 823 K are achieved in the CuInTe2 based TE material. This implies that the synergistic regulation of electrical and thermal transport properties by anion substitution and in situ nanostructure is a very effective approach to improve the TE performance of CuInTe2 compounds.  相似文献   

15.
Herein, a high figure of merit (ZT) of ≈1.7 at 823 K is reported in p‐type polycrystalline Cd‐doped SnSe by combining cation vacancies and localized‐lattice engineering. It is observed that the introduction of Cd atoms in SnSe lattice induce Sn vacancies, which act as p‐type dopants. A combination of facile solvothermal synthesis and fast spark plasma sintering technique boosts the Sn vacancy to a high level of ≈2.9%, which results in an optimum hole concentration of ≈2.6 × 1019 cm?3 and an improved power factor of ≈6.9 µW cm?1 K?2. Simultaneously, a low thermal conductivity of ≈0.33 W m?1 K?1 is achieved by effective phonon scattering at localized crystal imperfections, as observed by detailed structural characterizations. Density functional theory calculations reveal that the role of Cd atoms in the SnSe lattice is to reduce the formation energy of Sn vacancies, which in turn lower the Fermi level down into the valence bands, generating holes. This work explores the fundamental Cd‐doping mechanisms at the nanoscale in a SnSe matrix and demonstrates vacancy and localized‐lattice engineering as an effective approach to boosting thermoelectric performance. The work provides an avenue in achieving high‐performance thermoelectric properties of materials.  相似文献   

16.
The (Bi,Sb)2Te3 (BST) compounds have long been considered as the benchmark of thermoelectric (TE) materials near room temperature especially for refrigeration. However, their unsatisfactory TE performances in wide‐temperature range severely restrict the large‐scale applications for power generation. Here, using a self‐assembly protocol to deliver a homogeneous dispersion of 2D inclusion in matrix, the first evidence is shown that incorporation of MXene (Ti3C2Tx) into BST can simultaneously achieve the improved power factor and greatly reduced thermal conductivity. The oxygen‐terminated Ti3C2Tx with proper work function leads to highly increased electrical conductivity via hole injection and retained Seebeck coefficient due to the energy barrier scattering. Meanwhile, the alignment of Ti3C2Tx with the layered structure significantly suppresses the phonon transport, resulting in higher interfacial thermal resistance. Accordingly, a peak ZT of up to 1.3 and an average ZT value of 1.23 from 300 to 475 K are realized for the 1 vol% Ti3C2Tx/BST composite. Combined with the high‐performance composite and rational device design, a record‐high thermoelectric conversion efficiency of up to 7.8% is obtained under a temperature gradient of 237 K. These findings provide a robust and scalable protocol to incorporate MXene as a versatile 2D inclusion for improving the overall performance of TE materials toward high energy‐conversion efficiency.  相似文献   

17.
High ZT of 1.34 at 766 K and a record high average ZT above 1 in the temperature range of 300‐864 K are attained in n‐type PbTe by engineering the temperature‐dependent carrier concentration and weakening electron–phonon coupling upon Ga doping. The experimental studies and first principles band structure calculations show that doping with Ga introduces a shallow level impurity contributing extrinsic carriers and imparts a deeper impurity level that ionizes at higher temperatures. This adjusts the carrier concentration closer to the temperature‐dependent optimum and thus maximizes the power factor in a wide temperature range. The maximum power factor of 35 µW cm−1 K−2 is achieved for the Pb0.98Ga0.02Te compound, and is maintained over 20 µWcm−1 K−2 from 300 to 767 K. Band structure calculations and X‐ray photoelectron spectroscopy corroborate the amphoteric role of Ga in PbTe as the origin of shallow and deep levels. Additionally, Ga doping weakens the electron–phonon coupling, leading to high carrier mobilities in excess of 1200 cm2 V−1 s−1. Enhanced point defect phonon scattering yields a reduced lattice thermal conductivity. This work provides a new avenue, beyond the conventional shallow level doping, for further improving the average ZT in thermoelectric materials.  相似文献   

18.
A high ZT (thermoelectric figure of merit) of ≈1.4 at 900 K for n‐type PbTe is reported, through modifying its electrical and thermal properties by incorporating Sb and S, respectively. Sb is confirmed to be an amphoteric dopant in PbTe, filling Te vacancies at low doping levels (<1%), exceeding which it enters into Pb sites. It is found that Sb‐doped PbTe exhibits much higher carrier mobility than similar Bi‐doped materials, and accordingly, delivers higher power factors and superior ZT . The enhanced electronic transport is attributed to the elimination of Te vacancies, which appear to strongly scatter n‐type charge carriers. Building on this result, the ZT of Pb0.9875Sb0.0125Te is further enhanced by alloying S into the Te sublattice. The introduction of S opens the bandgap of PbTe, which suppresses bipolar conduction while simultaneously increasing the electron concentration and electrical conductivity. Furthermore, it introduces point defects and induces second phase nanostructuring, which lowers the lattice thermal conductivity to ≈0.5 W m?1 K?1 at 900 K, making this material a robust candidate for high‐temperature (500–900 K) thermoelectric applications. It is anticipated that the insights provided here will be an important addition to the growing arsenal of strategies for optimizing the performance of thermoelectric materials.  相似文献   

19.
This study investigates Ga-doped n-type PbTe thermoelectric materials and the dynamic phase conversion process of the second phases via Cu2Se alloying. Introducing Cu2Se enhances its electrical transport properties while reducing its lattice thermal conductivity (κlat) via weak electron–phonon coupling. Cu2Te and CuGa(Te/Se)2 (tetragonal phase) nanocrystals precipitate during the alloying process, resulting in Te vacancies and interstitial Cu in the PbTe matrix. At room temperature, Te vacancies and interstitial Cu atoms serve as n-type dopants, increasing the carrier concentration and electrical conductivity from ≈1.18 × 1019 cm−3 and ≈1870 S cm−1 to ≈2.26 × 1019 cm−3 and ≈3029 S cm−1, respectively. With increasing temperature, the sample exhibits a dynamic change in Cu2Te content and the generation of a new phase of CuGa(Te/Se)2 (cubic phase), strengthening the phonon scattering and obtaining an ultralow κlat. Pb0.975Ga0.025Te-3%CuSe exhibits a maximum figure of merit of ≈1.63 at 823 K, making it promising for intermediate-temperature device applications.  相似文献   

20.
Single crystalline SnSe is one of the most intriguing new thermoelectric materials but the thermoelectric performance of polycrystalline SnSe seems to lag significantly compared to that of a single crystal. Here an effective strategy for enhancing the thermoelectric performance of p‐type polycrystalline SnSe by Ag/Na dual‐doping and Ag8SnSe6 (STSe) nanoprecipitates is reported. The Ag/Na dual‐doping leads to a two orders of magnitude increase in carrier concentration and a convergence of valence bands (VBM1 and VBM5), which in turn results in sharp enhancement of electrical conductivities and high Seebeck coefficients in the Ag/Na dual‐doped samples. Additionally, the SnSe matrix becomes nanostructured with dispersed nanoprecipitates of the compound Ag8SnSe6, which further strengthens the scattering of phonons. Specifically, ≈20% reduction in the already ultralow lattice thermal conductivity is realized for the Sn0.99Na0.01Se–STSe sample at 773 K compared to the thermal conductivity of pure SnSe. Consequently, a peak thermoelectric figure of merit ZT of 1.33 at 773 K with a high average ZT (ZTave) value of 0.91 (423–823 K) is achieved for the Sn0.99Na0.01Se–STSe sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号