首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Ternary blend is proved to be a potential contender for achieving high efficiency in organic photovoltaics, which can apparently strengthen the absorption of active layer so as to better harvest light irradiation. Much of the previous work in ternary polymer solar cells focuses on broadening the absorption spectrum; however, a new insight is brought to study the third component, which in tiny amounts influents the small‐molecule acceptor‐based device performance. Without contributing to complementing the absorption, a minute amount of fullerene derivative, Bis‐PC70BM, can effectively play an impressive role as sensitizer in enhancing the external quantum efficiency of the host binary blend, especially for polymeric donor. Detailed investigations reveal that the minute addition of Bis‐PC70BM can realize morphology modification as well as facilitate electron transfer from polymeric donor to small molecule acceptor via cascade energy level modulation, and therefore lead to an improvement in device efficiency.  相似文献   

2.
    
The structure evolution of oligomer fused‐ring electron acceptors (FREAs) toward high efficiency of as‐cast polymer solar cells (PSCs) is reported. First, a series of FREAs (IC‐(1‐3)IDT‐IC) based on indacenodithiophene (IDT) oligomers as cores are designed and synthesized, effects of IDT number (1–3) on their basic optical and electronic properties are investigated, and more importantly, the relationship between device performance of as‐cast PSCs and donor(D)/acceptor(A) matching (absorption, energy level, morphology, and charge transport) of IC‐(1‐3)IDT‐IC acceptors and two representative polymer donors, PTB7‐Th and PDBT‐T1 is surveyed. Then, the most promising D/A system (PDBT‐T1/IC‐1IDT‐IC) with the best D/A harmony among the six D/A combinations, which yields a power conversion efficiency (PCE) of 7.39%, is found. Finally, changing the side‐chains in IC‐1IDT‐IC from alkylphenyl to alkyl enhances the PCE from 7.39% to 9.20%.  相似文献   

3.
    
Solution‐processed small molecule (SM) solar cells have the prospect to outperform their polymer‐fullerene counterparts. Considering that both SM donors/acceptors absorb in visible spectral range, higher expected photocurrents should in principle translate into higher power conversion efficiencies (PCEs). However, limited bulk‐heterojunction (BHJ) charge carrier mobility (<10‐4 cm2 V‐1 s‐1) and carrier lifetimes (<1 µs) often impose active layer thickness constraints on BHJ devices (≈100 nm), limiting external quantum efficiencies (EQEs) and photocurrent, and making large‐scale processing techniques particularly challenging. In this report, it is shown that ternary BHJs composed of the SM donor DR3TBDTT (DR3), the SM acceptor ICC6 and the fullerene acceptor PC71BM can be used to achieve SM‐based ternary BHJ solar cells with active layer thicknesses >200 nm and PCEs nearing 11%. The examinations show that these remarkable figures are the result of i) significantly improved electron mobility (8.2 × 10‐4 cm2 V‐1 s‐1), ii) longer carrier lifetimes (2.4 µs), and iii) reduced geminate recombination within BHJ active layers to which PC71BM has been added as ternary component. Optically thick (up to ≈500 nm) devices are shown to maintain PCEs >8%, and optimized DR3:ICC6:PC71BM solar cells demonstrate long‐term shelf stability (dark) for >1000 h, in 55% humidity air environment.  相似文献   

4.
Ternary organic solar cells (OSCs) have attracted much research attention, as they can maintain the simplicity of the single‐junction device architecture while broadening the absorption range of OSCs. However, one main challenge that limits the development of ternary OSCs is the difficulty in controlling the morphology of ternary OSCs. In this paper, an effective approach to control the morphology is presented that leads to multiple cases of efficient nonfullerene ternary OSCs with efficiencies of up to 11.2%. This approach is based on a donor polymer with strong temperature dependent aggregation properties processed from hot solutions without any solvent additives and a pair of small molecular acceptors (SMAs) that have similar surface tensions and thus low propensity to form discrete phases. Such a ternary blend exhibits a simplified bulk‐heterojunction morphology that is similar to the morphology of previously reported binary blends. As a result, an almost linear relationship between VOC and film composition is observed for all nonfullerene ternary devices. Meanwhile, by carefully designing a control system with a large interfacial tension, a different phase separation and VOC dependence is demonstrated. This morphology control approach can be applicable to more material systems and accelerates the development of the ternary OSC field.  相似文献   

5.
6.
    
In consideration of the unique advantages of new non‐fullerene acceptors and the tandem‐junction structure, organic photovoltaics (OPVs) based on them are very promising. Studies related to this emerging area began in 2016 with achieved power conversion efficiencies (PCEs) of 8–10%, which have now been boosted to 17%. In this essay, the construction of high‐performance OPVs is discussed, with a focus on combining the advantages of new non‐fullerene acceptors and the tandem‐junction structure. In order to achieve higher PCEs, methods to enable high short‐circuit current density, open‐circuit voltage, and fill factor are discussed. In addition, the stability and reproducibility of high‐efficiency OPVs are also addressed. Herein, it is forecast that the new non‐fullerene acceptors‐based tandem‐junction OPVs will become the next big wave in the field and achieve high PCEs over 20% in the near future. Some promising research directions on this emerging hot topic are proposed which may further push the field into the 25% high efficiency era and considerably advance the technology beyond laboratory research.  相似文献   

7.
    
Two types of all‐small‐molecule ternary solar cells consisting of two small‐molecule donors and one acceptor (fullerene/non‐fullerene) are developed. Interestingly, both these devices have a common component: a carefully designed medium bandgap small molecule, which possesses appropriate energy levels and displays good compatibility with the host donor. In the fullerene system, the charge‐relaying role of the additive donor is confirmed by the improved charge transportation and suppressed charge recombination. While in the non‐fullerene system, the mixed face‐on and edge‐on orientation of the ternary film induced by the additive donor dominates the promotion of charge transportation. Accordingly, both ternary devices deliver higher short‐circuit current density, fill factor, and power conversion efficiencies of over 10% compared to binary ones. This work offers a promising guideline on the construction of high‐performance all‐small‐molecule ternary solar cells by incorporating a miscible small‐molecule donor.  相似文献   

8.
    
Two narrow bandgap non‐fullerene acceptors (NBG‐NFAs), namely, COTIC‐4F and SiOTIC‐4F, are designed and synthesized for the fabrication of efficient near‐infrared organic solar cells (OSCs). The chemical structures of the NBG‐NFAs contain a D′‐D‐D′ electron‐rich internal core based on a cyclopentadithiophene (or dithienosilole) (D) and alkoxythienyl (D′) core, end‐capped with the highly electron‐deficient unit 2‐(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐inden‐1‐ylidene)malononitrile (A), ultimately providing a A‐D′‐D‐D′‐A molecular configuration that enhances the intramolecular charge transfer characteristics of the excited states. One can thereby reduce the optical bandgap (Egopt) to as low as ≈1.10 eV, one of the smallest values for NFAs reported to date. In bulk‐heterojunction (BHJ) OSCs, NBG‐NFA blends with the polymer donor PTB7‐Th yield power conversion efficiencies (PCE) of up to 9.0%, which is particularly high when compared against a range of NBG BHJ blends. Most significantly, it is found that, despite the small energy loss (Egopt ? eVOC) of 0.52 eV, the PTB7‐Th/NBG‐NFA bulk heterojunction blends can yield short‐circuit current densities of up to 22.8 mA cm?2, suggesting that the design and application of NBG‐NFA materials have substantial potential to further improve the PCE of OSCs.  相似文献   

9.
    
The field of nonfullerene organic solar cells (OSCs) has seen an impressive progress, largely due to advances in high‐performance small molecule acceptors (SMAs). As a large portion of the solar energy is located in the near‐infrared region, it is important to develop ultralow‐bandgap SMAs that have extended absorption in the spectral range of 800–1000 nm to maximize light absorption and efficiencies. In this work, three low‐bandgap SMAs, namely, IXIC, IXIC‐2Cl, and IXIC‐4Cl, are designed and synthesized with same fused terthieno[3,2‐b]thiophene donor unit and different end groups (EGs). The three SMAs all have low optical bandgap (Eg) of 1.35, 1.30, and 1.25 eV, respectively. The chlorination on EGs can lower the energy level and broaden absorption range of the SMAs. As a result, the Voc of the devices is reduced but the Jsc is significantly increased. In addition, the addition of chlorine atoms can enhance π–π stacking and crystallinity of the SMAs, which result in high fill factors. Overall, the optimum EGs are monochlorine‐substituted IC and OSCs based on PBDB‐T:IXIC‐2Cl that can achieve remarkable power conversion efficiencies (PCEs) of 12.2%, which is one of the highest PCEs for nonfullerene organic solar cells based on low‐bandgap SMAs.  相似文献   

10.
    
Although the field of all‐polymer solar cells (all‐PSCs) has seen rapid progress in device efficiencies during the past few years, there are limited choices of polymer acceptors that exhibit strong absorption in the near‐IR region and achieve high open‐circuit voltage (VOC) at the same time. In this paper, an all‐PSC device is demonstrated with a 12.06% efficiency based on a new polymer acceptor (named PT‐IDTTIC) that exhibits strong absorption (maximum absorption coefficient: 2.41 × 105 cm?1) and a narrow optical bandgap (1.49 eV). Compared to previously reported polymer acceptors such as those based on the indacenodithiophene (IDT) core, the indacenodithienothiophene (IDTT) core has further extended fused ring, providing the polymer with extended absorption into the near‐IR region and also increases the electron mobility of the polymer. By blending PT‐IDTTIC with the donor polymer, PM6, a high‐efficiency all‐PSC is achieved with a small voltage loss of 0.52 V, without sacrificing JSC and FF, which demonstrates the great potential of high‐performance all‐PSCs.  相似文献   

11.
12.
13.
    
Symmetry breaking provides a new material design strategy for nonfullerene small molecule acceptors (SMAs). The past 10 years have witnessed significant advances in asymmetric nonfullerene SMAs in organic solar cells (OSCs) with power conversion efficiency (PCE) increasing from ≈1% to ≈14%. In this review, the progress of asymmetric nonfullerene SMAs, including early reports of asymmetric nonfullerene SMAs, asymmetric PDI‐based nonfullerene SMAs, and asymmetric acceptor–donor–acceptor (A–D–A)‐type nonfullerene SMAs, is summarized. The structure–property relationships and the perspectives for future development of asymmetric nonfullerene SMAs are also discussed.  相似文献   

14.
    
Designing polymers that facilitate exciton dissociation and charge transport is critical for the production of highly efficient all‐polymer solar cells (all‐PSCs). Here, the development of a new class of high‐performance naphthalenediimide (NDI)‐based polymers with large dipole moment change (Δµge) and delocalized lowest unoccupied molecular orbital (LUMO) as electron acceptors for all‐PSCs is reported. A series of NDI‐based copolymers incorporating electron‐withdrawing cyanovinylene groups into the backbone (PNDITCVT‐R) is designed and synthesized with 2‐hexyldecyl (R = HD) and 2‐octyldodecyl (R = OD) side chains. Density functional theory calculations reveal an enhancement in Δµge and delocalization of the LUMO upon the incorporation of cyanovinylene groups. All‐PSCs fabricated from these new NDI‐based polymer acceptors exhibit outstanding power conversion efficiencies (7.4%) and high fill factors (65%), which is attributed to efficient exciton dissociation, well‐balanced charge transport, and suppressed monomolecular recombination. Morphological studies by grazing X‐ray scattering and resonant soft X‐ray scattering measurements show the blend films containing polymer donor and PNDITCVT‐R acceptors to exhibit favorable face‐on orientation and well‐mixed morphology with small domain spacing (30–40 nm).  相似文献   

15.
16.
    
Two n‐type organic semiconductor (n‐OS) small molecules m‐ITIC‐2F and m‐ITIC‐4F with fluorinated 2‐(2,3‐dihydro‐3‐oxo‐1H‐inden‐1‐ylidene)propanedinitrile (IC) terminal moieties are prepared, for the application as an acceptor in polymer solar cells (PSCs), to further improve the photovoltaic performance of the n‐OS acceptor 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene) indanone) ‐5,5,11,11‐tetrakis(3‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐sindaceno[1,2‐b:5,6‐b′]‐dithiophene (m‐ITIC). Compared to m‐ITIC, these two new acceptors show redshifted absorption, higher molecular packing order, and improved electron mobilities. The power conversion efficiencies (PCE) of the as‐cast PSCs with m‐ITIC‐2F or m‐ITIC‐4F as an acceptor and a low‐cost donor–acceptor (D–A) copolymer PTQ10 as a donor reach 11.57% and 11.64%, respectively, which are among the highest efficiency for the as‐cast PSCs so far. Furthermore, after thermal annealing treatment, improved molecular packing and enhanced phase separation are observed, and the higher PCE of 12.53% is achieved for both PSCs based on the two acceptors. The respective and unique advantage with the intrinsic high degree of order, molecular packing, and electron mobilities of these two acceptors will be suitable to match with different p‐type organic semiconductor donors for higher PCE values, which provide a great potential for the PSCs commercialization in the near future. These results indicate that rational molecular structure optimization is of great importance to further improve photovoltaic properties of the photovoltaic materials.  相似文献   

17.
    
The effects of alkyl chain regiochemistry on the properties of donor polymers and performances of non‐fullerene organic solar cells are investigated. Two donor polymers (PfBTAZ and PfBTAZS) are compared that have nearly identical chemical structures except for the regiochemistry of alkyl chains. The optical properties and crystallinity of two polymers are nearly identical yet the PfBTAZ:O‐IDTBR blend exhibits nearly double domain size compared to the blend based on PfBTAZS:O‐IDTBR. To reveal the origins of the very different domain size of two blends, the morphology of neat polymer films is characterized, and it is found that PfBTAZ tends to aggregate into much larger polymer fibers without the presence of O‐IDTBR. This indicates that it is not the polymer:O‐IDTBR interactions but the intrinsic aggregation properties of two polymers that determine the morphology features of neat and blend films. The stronger aggregation tendency of PfBTAZ could be explained by its more co‐planar geometry of the polymer backbone arising from the different alkyl chain regiochemistry. Combined with the similar trend observed in another set of donor polymers (PTFB‐P and PTFB‐PS), the results provide an important understanding of the structure–property relationships that could guide the development of donor polymers for non‐fullerene organic solar cells.  相似文献   

18.
19.
    
Reaching device efficiencies that can rival those of polymer‐fullerene Bulk Heterojunction (BHJ) solar cells (>10%) remains challenging with the “All‐Small‐Molecule” (All‐SM) approach, in part because of (i) the morphological limitations that prevail in the absence of polymer and (ii) the difficulty to raise and balance out carrier mobilities across the active layer. In this report, the authors show that blends of the SM donor DR3TBDTT (DR3) and the nonfullerene SM acceptor O‐IDTBR are conducive to “All‐SM” BHJ solar cells with high open‐circuit voltages (VOC) >1.1 V and PCEs as high as 6.4% (avg. 6.1%) when the active layers are subjected to a post‐processing solvent vapor‐annealing (SVA) step with dimethyl disulfide (DMDS). Combining electron energy loss spectroscopy (EELS) analyses and systematic carrier recombination examinations, the authors show that SVA treatments with DMDS play a determining role in improving charge transport and reducing non‐geminate recombination for the DR3:O‐IDTBR system. Correlating the experimental results and device simulations, it is found that substantially higher BHJ solar cell efficiencies of >12% can be achieved if the IQE and carrier mobilities of the active layer are increased to >85% and >10?4 cm2 V?1 s?1, respectively, while suppressing the recombination rate constant k to <10?12 cm3 s?1.  相似文献   

20.
    
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been is applied as hole transport material in organic electronic devices for more than 20 years. However, the redundant sulfonic acid group of PEDOT:PSS has often been overlooked. Herein, PEDOT:PSS‐DA is prepared via a facile doping of PEDOT:PSS with dopamine hydrochloride (DA·HCl) which reacts with the redundant sulfonic acid of PSS. The PEDOT:PSS‐DA film exhibits enhanced work function and conductivity compared to those of PEDOT:PSS. PEDOT:PSS‐DA‐based devices show a power conversion efficiency of 16.55% which is the highest in organic solar cells (OSCs) with (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithio‐phene))‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)‐benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione))] (PM6):(2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile) (Y6) as the active layer. Furthermore, PEDOT:PSS‐DA also exhibits enhanced performance in three other donor/acceptor systems, exhibiting high compatibility in OSCs. This work demonstrates that doping PEDOT:PSS with various amino derivatives is a potentially efficient strategy to enhance the performance of PEDOT:PSS in organic electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号