首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium–sulfur (Li‐S) batteries are a promising next‐generation energy‐storage system, but the polysulfide shuttle and dendritic Li growth seriously hinder their commercial viability. Most of the previous studies have focused on only one of these two issues at a time. To address both the issues simultaneously, presented here is a highly conductive, noncarbon, 3D vanadium nitride (VN) nanowire array as an efficient host for both sulfur cathodes and lithium‐metal anodes. With fast electron and ion transport and high porosity and surface area, VN traps the soluble polysulfides, promotes the redox kinetics of sulfur cathodes, facilitates uniform nucleation/growth of lithium metal, and inhibits lithium dendrite growth at an unprecedented high current density of 10 mA cm?2 over 200 h of repeated plating/stripping. As a result, VN‐Li||VN‐S full cells constructed with VN as both an anode and cathode host with a negative to positive electrode capacity ratio of only ≈2 deliver remarkable electrochemical performance with a high Coulombic efficiency of ≈99.6% over 850 cycles at a high 4 C rate and a high areal capacity of 4.6 mA h cm?2. The strategy presented here offers a viable approach to realize high‐energy‐density, safe Li‐metal‐based batteries.  相似文献   

2.
Lithium metal batteries (LMBs) are promising candidates for next‐generation energy storage due to their high energy densities on both weight and volume bases. However, LMBs usually undergo uncontrollable lithium deposition, unstable solid electrolyte interphase, and volume expansion, which easily lead to low Coulombic efficiency, poor cycling performance, and even safety hazards, hindering their practical applications for more than forty years. These issues can be further exacerbated if operated at high current densities. Here a stable lithium metal battery enabled by 3D porous poly‐melamine‐formaldehyde (PMF)/Li composite anode is reported. PMF with a large number of polar groups (amine and triazine) can effectively homogenize Li‐ion concentration when these ions approach to the anode surface and thus achieve uniform Li deposition. Moreover, the 3D structured anode can serve as a Li host to mitigate the volume change during Li stripping and plating process. Galvanostatic measurements demonstrate that the 3D composite electrode can achieve high‐lithium Coulombic efficiency of 94.7% at an ultrahigh current density of 10 mA cm?2 after 50 cycles with low hysteresis and smooth voltage plateaus. When coupled with Li4Ti5O12, half‐cells show enhanced rate capabilities and Coulombic efficiencies, opening great opportunities for high‐energy batteries.  相似文献   

3.
Lithium metal is the most promising anode material for high‐energy‐density batteries due to its high specific capacity of 3860 mAh g?1 and low reduction potential of ?3.04 V versus standard hydrogen electrode. However, huge volume change, safety concerns, and low efficiency impede the practical applications of Li metal anodes. Herein, it is shown that the nitrogen‐doped graphene modified 3D porous Cu (3DCu@NG) current collector can mitigate the above problems. The N‐doped graphene, coating on the surface of 3D current collector, not only contributes to a uniform Li+ flux, but also leads to a scattered distribution of electrons throughout the surface, finally contributing to a uniform Li deposition and the improved electrochemical performance. In addition, the continuously porous structure of 3DCu@NG provides a space for the metallic Li deposition and could effectually accommodate the volume expansion during cycling. As a result, the Li‐3DCu@NG anode exhibits a high areal capacity of 4 mAh cm?2, a high Li utilization of ≈98%, and an ultralow voltage hysteresis of ≈19 mV. The multifunctional N‐doped graphene modified 3D porous current collector promisingly provides a strategy for safe and high‐energy lithium metal anodes.  相似文献   

4.
Li metal can potentially deliver much higher specific capacity than commercially used anodes. Nevertheless, because of its poor reversibility, abundant excess Li (usually more than three times) is required in Li metal batteries, leading to higher costs and decreased energy density. Here, a concentrated lithium bis(trifluoromethane sulfonyl) imide (LiTFSI)–lithium nitrate (LiNO3)–lithium bis(fluorosulfonyl)imide (LiFSI) ternary‐salts electrolyte is introduced to realize a high stable Li metal full‐cell with only a slight excess of Li. LiNO3 and LiFSI contribute to the formation of stable Li2O–LiF‐rich solid electrolyte interface layers, and LiTFSI helps to stabilize the electrolyte under high concentration. Li metal in the electrolyte remains stable over 450 cycles and the average Coulombic efficiency reaches 99.1%. Moreover, with 0.5 × excess Li metal, the Coulombic efficiency of Li metal in the LiTFSI–LiNO3–LiFSI reaches 99.4%. The electrolyte also presents high stability to the LiFePO4 cathode, the capacity retention after 500 cycles is 92.0% and the Coulombic efficiency is 99.8%. A Li metal full‐cell with only 0.44 × excess Li is also assembled, it remains stable over 70 cycles and 83% of the initial capacity is maintained after 100 cycles.  相似文献   

5.
Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh theoretical specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. It is demonstrated that long‐term cycling of Li metal batteries can be realized by the formation of a transient high‐concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately be solvated by the available solvent molecules and facilitate the formation of a stable and flexible solid electrolyte interphase (SEI) layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode attacked by free organic solvents and enables the long‐term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development of Li metal batteries that could be operated at high current densities for a wide range of applications.  相似文献   

6.
The application of lithium (Li) metal anodes in Li metal batteries has been hindered by growth of Li dendrites, which lead to short cycling life. Here a Li‐ion‐affinity leaky film as a protection layer is reported to promote a dendrite‐free Li metal anode. The leaky film induces electrokinetic phenomena to enhance Li‐ion transport, leading to a reduced Li‐ion concentration polarization and homogeneous Li‐ion distribution. As a result, the dendrite‐free Li metal anode during Li plating/stripping is demonstrated even at an extremely high deposition capacity (6 mAh cm?2) and current density (40 mA cm?2) with improved Coulombic efficiencies. A full cell battery with the leaky‐film protected Li metal as the anode and high‐areal‐capacity LiNi0.8Co0.1Mn0.1O2 (NCM‐811) (≈4.2 mAh cm?2) or LiFePO4 (≈3.8 mAh cm?2) as the cathode shows improved cycling stability and capacity retention, even at lean electrolyte conditions.  相似文献   

7.
Lithium metal is regarded as the “Holy Grail” of anode materials due to its low electrochemical potential and high theoretical capacity. Unfortunately, its unstable solid electrolyte interphase (SEI) leads to low Coulombic efficiency (CE) and serious safety issues. Herein, a hybrid nanoscale polymeric protective film with tunable composition and improved stiffness is developed by incorporating aluminum crosslinkers into the polymer chains. The Li plating/stripping process is regulated through the protective coating and the dendrite growth is effectively suppressed. Promisingly, the protected Li can deliver stable performance for more than 350 h with a cycling capacity of 2 mAh cm?2 without a notable increase in overpotential. Moreover, a stable charge/discharge cycling in Li–O2 batteries with the protected Li can be maintained for more than 600 h. This work provides guidance on the rational design of electrode interfaces and opens up new opportunities for the fabrication of next‐generation energy storage systems.  相似文献   

8.
Over the last 40 years, metallic lithium as an anode material has been of great interest owing to its high energy density. However, dendritic lithium growth causes serious safety issues. Awareness and understanding of the Li deposition and stripping processes have grown rapidly especially in recent years, and consequently, there have been many attempts to suppress the Li dendrites. Recent developments that have modified the electrolytes and the Li anode in order to inhibit the growth of Li dendrite and improve cycling performance are summarized. It has been shown that current density, solid‐electrolyte interphase (SEI) film, Li+ transference number, and shear modulus have significant impact on the growth behavior and the Coulombic efficiency. Various methods have been introduced to increase the surface area of the Li anode, enhance Li+ conductivity, form stable SEI film, and improve mechanical strength of electrolytes. These approaches are discussed in details, and the perspectives regarding the future use of Li anode are also outlined. It is hoped that this review will facilitate the future development of Li metal batteries.  相似文献   

9.
Li metal anodes are going through a great revival but they still encounter grand challenges. One often neglected issue is that most reported Li metal anodes are only cyclable under relatively low current density (<5 mA cm?2) and small areal capacity (<5 mAh cm?2), which essentially limits their high‐power applications and results in ineffective Li utilization (<1%). Herein, it is reported that surface alloyed Li metal anodes can enable reversible cycling with ultrafast rate and ultralarge areal capacity. Low‐cost Si wafers are used and are chemically etched down to 20–30 µm membranes. Simply laminating a Si membrane onto Li foil results in the formation of LixSi alloy film fused onto Li metal with mechanical robustness and high Li‐ion conductivity. Symmetric cell measurements show that the surface alloyed Li anode has excellent cycling stability, even under high current density up to 25 mA cm?2 and unprecedented areal capacity up to 100 mAh cm?2. Furthermore, the surface alloyed Li anode is paired with amorphous MoS3 cathode and achieves remarkable full‐cell performance.  相似文献   

10.
Lithium (Li) metal is a key anode material for constructing next generation high energy density batteries. However, dendritic Li deposition and unstable solid electrolyte interphase (SEI) layers still prevent practical application of Li metal anodes. In this work, it is demonstrated that an uniform Li coating can be achieved in a lithium fluoride (LiF) decorated layered structure of stacked graphene (SG), leading to the formation of an SEI‐functionalized membrane that retards electron transfer by three orders of magnitude to avoid undesirable Li deposition on the top surface, and ameliorates Li+ ion migration to enable uniform and dendrite‐free Li deposition beneath such an interlayer. Surface chemistry analysis and density functional theory calculations demonstrate that these beneficial features arise from the formation of C–Fx surface components on the SG sheets during the Li coating process. Based on such an SEI‐functionalized membrane, stable cycling at high current densities up to 3 mA cm?2 and Li plating capacities up to 4 mAh cm?2 can be realized in LiPF6/carbonate electrolytes. This work elucidates the promising strategy of modifying Li plating behavior through the SEI‐functionalized carbon structure, with significantly improved cycling stability of rechargeable Li metal anodes.  相似文献   

11.
Artificial solid‐electrolyte interphase (SEI) is one of the key approaches in addressing the low reversibility and dendritic growth problems of lithium metal anode, yet its current effect is still insufficient due to insufficient stability. Here, a new principle of “simultaneous high ionic conductivity and homogeneity” is proposed for stabilizing SEI and lithium metal anodes. Fabricated by a facile, environmentally friendly, and low‐cost lithium solid‐sulfur vapor reaction at elevated temperature, a designed lithium sulfide protective layer successfully maintains its protection function during cycling, which is confirmed by both simulations and experiments. Stable dendrite‐free cycling of lithium metal anode is realized even at a high areal capacity of 5 mAh cm?2, and prototype Li–Li4Ti5O12 cell with limited lithium also achieves 900 stable cycles. These findings give new insight into the ideal SEI composition and structure and provide new design strategies for stable lithium metal batteries.  相似文献   

12.
Lithium (Li) metal is an ideal anode material for high energy density batteries. However, the low Coulombic efficiency (CE) and the formation of dendrites during repeated plating and stripping processes have hindered its applications in rechargeable Li metal batteries. The accurate measurement of Li CE is a critical factor to predict the cycle life of Li metal batteries, but the measurement of Li CE is affected by various factors that often lead to conflicting values reported in the literature. Here, several parameters that affect the measurement of Li CE are investigated and a more accurate method of determining Li CE is proposed. It is also found that the capacity used for cycling greatly affects the stabilization cycles and the average CE. A higher cycling capacity leads to faster stabilization of Li anode and a higher average CE. With a proper operating protocol, the average Li CE can be increased from 99.0% to 99.5% at a high capacity of 6 mA h cm?2 (which is suitable for practical applications) when a high‐concentration ether‐based electrolyte is used.  相似文献   

13.
The lithium–sulfur battery is a promising next‐generation rechargeable battery system which promises to be less expensive and potentially fivefold more energy dense than current Li‐ion technologies. This can only be achieved by improving the sulfur utilization in thick, high areal loading cathodes while minimizing capacity fading to realize high practical energy densities and long cycle‐life. This study reports a simple method to fabricate a high capacity, high loading cathode with one of the highest cycle‐stabilities reported. It is demonstrated that sulfur sols formed by crashing dissolved elemental sulfur into water are trapped between graphene oxide sheets when flocculated with polyethyleneimine. Low temperature, hydrothermal treatment produces a conductive, partially covalent composite exhibiting outstanding cycle‐stability. Using this method, sulfur can be uniformly distributed at fractions as high as 75.7 wt%. Electrodes with high areal sulfur loadings (up to ≈5.4 mg cm?2), prepared using these composites, lead to projected high cell level practical energy densities of 400 Wh kg?1. The electrodes demonstrate negligible capacity loss over 250 cycles at 0.15 C and only 0.028% capacity loss per cycle over 810 cycles at 0.75 C. Eventual capacity fading is found to be linked to degradation of lithium‐metal anode suggesting that the cathode material remains stable over even more extended cycling.  相似文献   

14.
Lithium (Li) metal anodes are promising candidates for high‐energy‐density batteries. However, uncontrollable dendritic plating behavior and infinite volume expansion are hindering their practical applications. Herein, a novel CuO@Ti‐mesh (CTM) is prepared by microwave‐assisted reactions, followed by pressing on Li wafers, leading to Li/CuO@Ti‐mesh (LCTM) composite anodes. The lithiophilic CuO nanoflowers on Ti‐mesh provides evenly distributed nucleation sites, inducing uniform Li‐ion lateral plating, which can effectively inhibit the growth of Li dendrites and volume expansion during cycling. The as‐prepared LCTM composite anode exhibits high Coulombic efficiency (CE) of 94.2% at 10 mA cm‐2 over 90 cycles. Meanwhile, the LCTM anode shows a low overpotential of 50 mV at 10 mA cm‐2 over 16 000 cycles and a low overpotential of 90 and 250 mV even at ultrahigh current densities of 20 and 40 mA cm‐2. When paired with Li4Ti5O12 (LTO), it enhances the capacity retention of LTO/Li wafer full cells by about two times from 36.6% to 73.0% and 42.0% to 80.0% at 5C and 10C with long‐term cycling. It is hoped that this LCTM anode with ultrahigh rates and ultralong cycle life may put Li‐metal anode forward to practical applications, such as in Li–S, Li‐air batteries, etc.  相似文献   

15.
Secondary batteries based on earth‐abundant potassium metal anodes are attractive for stationary energy storage. However, suppressing the formation of potassium metal dendrites during cycling is pivotal in the development of future potassium metal‐based battery technology. Herein, a promising artificial solid‐electrolyte interphase (ASEI) design, simply covering a carbon nanotube (CNT) film on the surface of a potassium metal anode, is demonstrated. The results show that the spontaneously potassiated CNT framework with a stable self‐formed solid‐electrolyte interphase layer integrates a quasi‐hosting feature with fast interfacial ion transport, which enables dendrite‐free deposition of potassium at an ultrahigh capacity (20 mAh cm?2). Remarkably, the potassium metal anode exhibits an unprecedented cycle life (over 1000 cycles, over 2000 h) at a high current density of 5 mA cm?2 and a desirable areal capacity of 4 mAh cm?2. Dendrite‐free morphology in carbon‐fiber and carbon‐black‐based ASEI for potassium metal anodes, which indicates a broader promise of this approach, is also observed.  相似文献   

16.
The safety hazards and low Coulombic efficiency originating from the growth of lithium dendrites and decomposition of the electrolyte restrict the practical application of Li metal batteries (LMBs). Inspired by the low cost of low concentration electrolytes (LCEs) in industrial applications, dual‐salt LCEs employing 0.1 m Li difluorophosphate (LiDFP) and 0.4 m LiBOB/LiFSI/LiTFSI are proposed to construct a robust and conductive interphase on a Li metal anode. Compared with the conventional electrolyte using 1 m LiPF6, the ionic conductivity of LCEs is reduced but the conductivity decrement of the separator immersed in LCEs is moderate, especially for the LiDFP–LiFSI and LiDFP–LiTFSI electrolytes. The accurate Coulombic efficiency (CE) of the Li||Cu cells increases from 83.3% (electrolyte using 1 m LiPF6) to 97.6%, 94.5%, and 93.6% for LiDFP–LiBOB, LiDFP–LiFSI, and LiDFP–LiTFSI electrolytes, respectively. The capacity retention of Li||LiFePO4 cells using the LiDFP–LiBOB electrolyte reaches 95.4% along with a CE over 99.8% after 300 cycles at a current density of 2.0 mA cm?2 and the capacity reaches 103.7 mAh g?1 at a current density of up to 16.0 mA cm?2. This work provides a dual‐salt LCE for practical LMBs and presents a new perspective for the design of electrolytes for LMBs.  相似文献   

17.
Although metallic lithium is regarded as the “Holy Grail” for next‐generation rechargeable batteries due to its high theoretical capacity and low overpotential, the uncontrollable Li dendrite growth, especially under high current densities and deep plating/striping, has inhibited its practical application. Herein, a 3D‐printed, vertically aligned Li anode (3DP‐VALi) is shown to efficiently guide Li deposition via a “nucleation within microchannel walls” process, enabling a high‐performance, dendrite‐free Li anode. Moreover, the microchannels within the microwalls are beneficial for promoting fast Li+ diffusion, supplying large space for the accommodation of Li during the plating/stripping process. The high‐surface‐area 3D anode design enables high operating current densities and high areal capacities. As a result, the Li–Li symmetric cells using 3DP‐VALi demonstrate excellent electrochemical performances as high as 10 mA cm?2/10 mAh cm?2 for 1500 h and 5 mA cm?2/20 mAh cm?2 for 400 h, respectively. Additionally, the Li–S and Li–LiFePO4 cells using 3DP‐VALi anodes present excellent cycling stability up to 250 and 800 cycles at a rate of 1 C, respectively. It is believed that these new findings could open a new window for dendrite‐free metal anode design and pave the way toward energy storage devices with high energy/power density.  相似文献   

18.
Use of a protective coating on a lithium metal anode (LMA) is an effective approach to enhance its coulombic efficiency and cycling stability. Here, a facile approach to produce uniform silver nanoparticle‐decorated LMA for high‐performance Li metal batteries (LMBs) is reported. This effective treatment can lead to well‐controlled nucleation and the formation of a stable solid electrolyte interphase (SEI). Ag nanoparticles embedded in the surface of Li anodes induce uniform Li plating/stripping morphologies with reduced overpotential. More importantly, cross‐linked lithium fluoride‐rich interphase formed during Ag+ reduction enables a highly stable SEI layer. Based on the Ag‐LiF decorated anodes, LMBs with LiNi1/3Mn1/3Co1/3O2 cathode (≈1.8 mAh cm?2) can retain >80% capacity over 500 cycles. The similar approach can also be used to treat sodium metal anodes. Excellent stability (80% capacity retention in 10 000 cycles) is obtained for a Na||Na3V2(PO4)3 full cell using a Na‐Ag‐NaF/Na anode cycled in carbonate electrolyte. These results clearly indicate that synergetic control of the nucleation and SEI is an efficient approach to stabilize rechargeable metal batteries.  相似文献   

19.
Because of its remarkably high theoretical capacity and favorable redox voltage (?2.71 V vs the standard hydrogen electrode), Na is a promising anode material for Na ion batteries. In this study, macroporous catalytic carbon nanotemplates (MC‐CNTs) based on nanoweb‐structured carbon nanofibers with various carbon microstructures are prepared from microbe‐derived cellulose via simple heating at 800 or 2400 °C. MC‐CNTs prepared at 800 °C have amorphous carbon structures with numerous topological defects, and exhibit a lower voltage overpotential of ≈8 mV in galvanostatic charge/discharge testing. In addition, MC‐CNT‐800s exhibit high Coulombic efficiencies of 99.4–99.9% during consecutive cycling at current densities ranging from 0.2 to 4 mA cm?2. However, the carbon structures of MC‐CNTs prepared at 800 °C are gradually damaged by cycling. This results in significant capacity losses after about 200 cycles. In contrast, MC‐CNTs prepared at 2400 °C exhibit well‐developed graphitic structures, and maintain predominantly stable cycling behaviors over 1000 cycles with Coulombic efficiencies of ≈99.9%. This study demonstrates the superiority of catalytic carbon nanotemplates with well‐defined pore structures and graphitic microstructures for use in Na metal anodes.  相似文献   

20.
Construction of stable dendrite‐free Li metal anode is crucial for the development of advanced Li–S and Li–air batteries. Herein, self‐supported TiC/C core/shell nanowire arrays as skeletons and confined hosts of molten Li forming integrated trilayer TiC/C/Li anode are described. The TiC/C core/shell nanowires with diameters of 400–500 nm exhibit merits of good lithiophilicity, high electrical conductivity, and abundant porosity. The as‐prepared TiC/C/Li anode exhibits prominent electrochemical performance with a small hysteresis of less than 85 mV beyond 200 cycles (3.0 mA cm?2) as well as a very high Coulombic efficiency up to 98.5% for 100 cycles at 1.0 mA cm?2. When the structured anode is coupled with lithium iron phosphate or sulfur cathode, the assembled full cells with trilayer TiC/C/Li anodes display enhanced capability retention and improved Coulombic efficiency. This is ascribed to the unique TiC/C matrix, which can not only provide interspace for accommodating “hostless” Li, but also afford interconnected rapid transfer paths for electrons and ions with low local current densities, leading to effective inhabitation growth of Li dendrites and lower interfacial resistance. A fresh way for construction of advanced stable Li metal anodes is provided in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号