首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beauvericin (BEA) is a mycotoxin produced by Beauveria bassiana and Fusarium species recently reported as toxic on porcine oocyte maturation and embryo development. The aim of this study was to assess, in the juvenile sheep, whether its effects are due to alterations of oocyte and/or embryo bioenergetic/oxidative status. Cumulus‐oocyte‐complexes (COCs) were exposed to BEA during in vitro maturation (IVM), evaluated for cumulus cell (CC) apoptosis, oocyte maturation and bioenergetic/oxidative status or subjected to in vitro fertilization (IVF) and embryo culture (IVEC). Oocyte nuclear maturation and embryo development were assessed after Hoechst staining and CC apoptosis was analysed by terminal deoxynucleotidyl transferase‐mediated dUTP nick‐End labeling assay and chromatin morphology after Hoechst staining by epifluorescence microscopy. Oocyte and blastocyst bioenergetic/oxidative status were assessed by confocal microscopy after mitochondria and reactive oxygen species labelling with specific probes. BEA showed various toxic effects, that is, short‐term effects on somatic and germinal compartment of the COC (CCs and the oocyte) and long‐term carry‐over effects on developing embryos. In detail, at 5 µM, it significantly reduced oocyte maturation and immature oocytes showed increased late‐stage (Type C) CC apoptosis and DNA fragmentation while matured oocytes showed unaffected CC viability but abnormal mitochondrial distribution patterns. At lower tested concentrations (3–0.5 µM), BEA did not affect oocyte maturation, but matured oocytes showed reduced mitochondrial activity. At low concentrations, BEA impaired embryo developmental capacity and blastocyst quality after IVF and IVEC. In conclusion, in the juvenile sheep, COC exposure to BEA induces CC apoptosis and oocyte mitochondrial dysfunction with negative impact on embryo development.  相似文献   

2.
3.
This study deals with the effect of plasminogen/plasmin on the in vitro maturation (IVM) of bovine cumulus‐oocyte complexes (COCs). Exogenous plasminogen activator streptokinase (SK) added to the IVM medium revealed similar values of cumulus expansion and oocyte nuclear maturation compared to controls (standard IVM medium). However, a decrease in both determinations was observed in COCs matured with the supplementation of ?‐aminocaproic acid (?‐ACA), a specific plasmin inhibitor. After in vitro fertilization, no differences were observed in either cleavage or blastocyst rates between SK and control groups; however, ε‐ACA treatment caused a decrease in both developmental rates. Zona pellucida (ZP) digestion time decreased in the SK group while it increased in the ε‐ACA group. Raman microspectroscopy revealed an increase in the intensity of the band corresponding to the glycerol group of sialic acid in the ZP of oocytes matured with SK, whereas ZP spectra of oocytes treated with ?‐ACA presented similarities with immature oocytes. The results indicate that although treatment with SK did not alter oocyte developmental competence, it induced modifications in the ZP of oocytes that could modify the folding of glycoproteins. Plasmin inhibition impairs oocyte maturation and has an impact on embryo development, thus evidencing the importance of this protease during IVM.  相似文献   

4.
5.
The number of follicles undergoing atresia in an ovary is very high, and isolation of cumulus-oocyte complexes (COCs) from such atretic follicles may impair subsequent embryo development in vitro. Our aim was to study if stringent selection by morphological assessment of COCs can improve embryo development, and to evaluate whether oocyte diameter is related with apoptotic ratio in oocytes and blastocysts. COCs from slaughtered cattle were recovered by follicle aspiration and classified depending on oocyte diameter: (A) <110 microm; (B) 110-120 microm; (C) >120 microm. COCs were matured, fertilized and cultured in vitro. Early and late stages of apoptosis were detected by Annexin-V and TUNEL staining, respectively, in denuded oocytes, COCs and blastocysts. Immature oocytes from Group A showed higher apoptotic ratio assessed by TUNEL assay, and the COCs corresponding to this group also showed a higher proportion of apoptotic cumulus cells. After maturation, no differences were present in the incidence of apoptosis among oocytes from different groups, but COCs corresponding to the largest diameter showed less apoptotic cumulus cells. In addition, the percentage of apoptotic oocytes decreased during in vitro maturation in all groups. Apoptotic cell ratio (ACR) in blastocysts was not related to oocyte diameter. In conclusion, oocyte selection and oocyte morphological evaluation prior to maturation was not sufficient to select non-atretic oocytes. When oocyte diameter was used as an additional selection the embryonic developmental potential increased together with oocyte diameter, but this improvement was not related to a lower incidence of apoptosis in the largest oocytes.  相似文献   

6.
7.
In a previous study we have shown that the addition of growth hormone (GH) during in vitro maturation accelerates nuclear maturation, induces cumulus expansion, and promotes subsequent cleavage and embryonic development. The aim of this study was to investigate whether the promotory effect of GH on subsequent cleavage and blastocyst formation is due to an improved fertilization and whether this effect is caused by an improved cytoplasmic maturation of the oocyte. Therefore, bovine cumulus oocyte complexes (COCs) were cultured for 22 hours in M199 supplemented with 100 ng/ml bovine GH (NIH-GH-B18). Subsequently the COCs were fertilized in vitro. Cultures without GH served as controls. To verify whether the promoted fertilization is caused by the effect of GH on cumulus expansion or oocyte maturation, cumulus cells were removed from the oocytes after in vitro maturation (IVM) and denuded MII oocytes were selected and fertilized in vitro. Both IVM and in vitro fertilization (IVF) were performed at 39°C in a humidified atmosphere with 5% CO2 in air. At 18 hours after the onset of fertilization, the nuclear stage of the oocytes was assessed using 4,6-diamino-2-phenylindole (DAPI) staining. Oocytes with either an metaphase I (MI) or MII nuclear stage and without penetrated sperm head were considered unfertilized; oocytes with two pronuclei, zygotes, and cleaved embryos were considered normally fertilized; and oocytes with more than two pronuclei were considered polyspermic. To evaluate cytoplasmic maturation, the distribution of cortical granules 22 hours after the onset of IVM, and sperm aster formation 8 hours after the onset of fertilization were assessed. In addition, to assess the sperm-binding capacity, COCs were fertilized in vitro, and 1 hour after the onset of fertilization the number of spermatozoa bound to the oocytes was counted. The addition of GH during IVM significantly (P < 0.001) enhanced the proportion of normal fertilized oocytes. Removal of the cumulus cells prior to fertilization and selection of the MII oocytes did not eliminate the positive effect of GH on fertilization. No effect of GH on the sperm-binding capacity of the oocyte was observed. In addition, GH supplementation during IVM significantly (P < 0.001) enhanced the migration of cortical granules and sperm aster formation. It can be concluded that the promotory effect of GH on the developmental competence of the oocyte is due to a higher fertilization rate as a consequence of an improved cytoplasmic maturation. Mol. Reprod. Dev. 49:444–453, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Intracellular free calcium ([Ca2+]i) is essential for oocyte maturation and early embryonic development. Here, we investigated the role of [Ca2+]i in oocytes from cumulus‐oocyte complexes (COCs) with respect to maturation and early embryonic development, using the calcium‐buffering agent BAPTA‐AM (1,2‐bis[2‐aminophenoxy]ethane‐N,N,N′,N′‐tetraacetic acid tetrakis [acetoxymethyl ester]). COCs were graded based on compactness of the cumulus mass and appearance of the cytoplasm, with Grade 1 indicating higher quality and developmental potential than Grade 3. Results showed that: (i) [Ca2+]i in metaphase‐II (MII) oocytes from Grade‐3 COCs was significantly higher than those from Grade‐1 COCs, and was significantly reduced by BAPTA‐AM; (ii) nuclear maturation of oocytes from Grade‐3 COCs treated with BAPTA‐AM was enhanced compared to untreated COCs; (iii) protein abundance of Cyclin B and oocyte‐specific Histone 1 (H1FOO) was improved in MII oocytes from Grade‐3 COCs treated with BAPTA‐AM; (iv) Ca2+ transients were triggered in each group upon fertilization, and the amplitude of [Ca2+]i oscillations increased in the Grade‐3 group upon treatment with BAPTA‐AM, with the magnitude approaching that of the Grade‐1 group; and (v) cleavage rates and blastocyst‐formation rates were improved in the Grade‐3 group treated with BAPTA‐AM compared to untreated controls following in vitro fertilization and parthenogenetic activation. Therefore, BAPTA‐AM dramatically improved oocyte maturation, oocyte quality, and embryonic development of oocytes from Grade‐3 COCs.  相似文献   

9.
To determine the role of cumulus cells in oocyte maturation, we carried out an investigation on the effects of addition of cumulus cells to the maturation medium on the developmental competence of corona-enclosed oocytes and oocytes denuded from their somatic cells. The addition of cumulus cell (1.6 x 10(6) cells/mL) improved the development of bovine corona-enclosed oocytes, however, addition of a similar number of cumulus cells as cumulus-oocyte-complexes (COCs, cumulus cell density: 4.2 x 10(6) cells/mL) had no effect on the development of oocytes denuded from their somatic cells. To determine if corona-enclosed oocytes can obtain developmental competence without the addition of extra cumulus cells, the effects of cell density during in vitro maturation on the developmental competence were studied. A density of 1.6 to 3.2 x 10(6) cumulus cells/mL was the most effective for in vitro maturation of oocytes with intact gap junctions. The effects of the medium conditioned by COCs on the developmental competence of oocytes was also examined. It was demonstrated that COC-conditioned medium improved the development of bovine oocytes to the blastocyst stage. These data suggest that the developmental competence of bovine oocytes surrounded with corona cells is supported in a cell density-dependent manner in the maturation medium. In addition, the data indicate that cumulus cells benefit bovine oocyte development either by secreting soluble factors which induce developmental competence or by removing an embryo development-suppressive component from the medium.  相似文献   

10.
Hyaluronic acid (HA), an important component of the extracellular matrix, plays a crucial role for cumulus cell expansion. Genes and proteins involved in HA synthesis and its receptor CD44 are expressed in cumulus oocyte complexes (COCs) in different animal species and increase during maturation. Hyaluronidase enzymes (Hyal) degrade HA into smaller biologically active HA fragments. To investigate the effects of the molecular size and concentration of HA on oocyte maturation and further embryo development, bovine oocytes were matured in vitro in the presence or absence of HA, Hyal-2 or 4-methylumbelliferone (4-MU); an HA synthesis inhibitor. The rates of oocyte nuclear maturation to metaphase II stage and development of embryos to blastocyst stage and blastocyst quality were recorded. Hyal-2 inhibited cumulus cell expansion without affecting oocyte maturation and further embryo development. Whereas, 4-MU at 1 mm reduced cumulus cell expansion, oocyte maturation rate and further embryo development; an effect which was partially abrogated by exogenous HA supplementation. These data suggest that HA production by cumulus cells during maturation is essential not only for cumulus cell expansion, but also for oocyte maturation and further embryo development. This effect is not affected by HA-degradation by Hyal-2.  相似文献   

11.
Epidermal growth factor (EGF) has received much attention recently for its positive effects on mammalian oocyte maturation and embryo development and its potential importance in cytoplasmic maturation of oocytes. Calcium (Ca2+) homeostasis in germinal vesicle stage oocytes has also been suggested to play a role in cytoplasmic maturation. This study examined the effects of EGF on Ca2+ mobilization as measured by its efflux from mouse oocytes at three time periods throughout maturation (0–4 hr, 4–8 hr, and 12 hr). Immature cumulus oocyte complexes (COCs) removed from the ovary for less than 4 hr exhibit oscillations in Ca2+ efflux that initiated 5–30 min following EGF stimulation. This response was not observed in COCs matured for 4–8 hr or 12 hr or in unstimulated 0–4 hr COCs. Denuded oocytes and cumulus cells did not show the same response to EGF (8.2 nM and 16.4 nM). Immunohistochemistry for detection of the EGF receptor along with EGF internalization studies showed that receptors are present both on cumulus cells and the oocyte but EGF appears to be internalized mainly by the cumulus cells. These data demonstrate that EGF induces oscillations in Ca2+ efflux in COCs 0–4 hr old and this response is mediated by the cumulus cells. Mol. Reprod. Dev. 53:244–253, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
The energy substrates lactate, pyruvate, and glucose were evaluated for supporting in vitro cytoplasmic maturation of rhesus monkey oocytes. A total of 321 cumulus-oocyte complexes (COCs) aspirated from > or = 1000 microm diameter follicles of unstimulated adult monkeys were matured in one of six media with various individual or combinations of energy substrates: (1) mCMRL-1066 (control); (2) HECM-10 (containing 4.5 mM lactate); (3) HECM-10+0.2 mM pyruvate; (4) HECM-10 + 5.0 mM glucose; (5) HECM-10+ 0.2 mM pyruvate + 5.0 mM glucose; and (6) HECM-10 minus lactate + 5.0 mM glucose. All media contained gonadotropins, oestradiol, and progesterone. Following maturation, all mature oocytes were subjected to the same in vitro fertilization and embryo culture procedures. Oocytes matured in control medium or in treatment groups 4 and 6 had the best morulae+ blastocysts developmental responses (35, 36, and 32%, respectively, P < 0.05). HECM-10 + 0.2 mM pyruvate + 5.0 mM glucose for COC maturation supported intermediate embryonic development (16% morulae + blastocysts). The lowest (P < 0.05) morula + blastocyst developmental responses were obtained after maturation of COCs in HECM-t10 and HECM-10 + 0.2 mM pyruvate (4 and 6%, respectively). The COCs matured in glucose-containing medium showed greater levels of cumulus expansion than those in glucose-free medium. These results indicate that (a) glucose is both necessary and sufficient as the energy substrate for supporting optimal cytoplasmic maturation in vitro of oocytes from unstimulated rhesus monkeys; (b) pyruvate suppresses the stimulatory effect of glucose on oocyte maturation; (c) glucose is involved in cumulus expansion; (d) cumulus expansion is not a reliable indicator of primate oocyte competence.  相似文献   

13.
14.
The cryopreservation of oocytes is an open problem as a result of their structural sensitivity to the freezing process. This study examined (i) the survival and meiotic competence of ovine oocytes vitrified at the GV stage with or without cumulus cells; (ii) the viability and functional status of cumulus cells after cryopreservation; (iii) the effect of cytochalasin B treatment before vitrification; (iv) chromatin and spindle organization; (v) the maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activity of vitrified oocytes after in vitro maturation. Sheep oocytes were vitrified at different times during in vitro maturation (0, 2, and 6 h) with (COCs) or without cumulus cells (DOs). After warming and in vitro maturation, oocytes denuded at 0 h culture showed a significantly higher survival and meiotic maturation rate compared to the other groups. Hoechst 33342/propidium iodide double staining of COCs and microinjection of Lucifer Yellow revealed extensive cumulus cell membrane damage and reduced oocyte-cumulus cell communications after vitrification. Cytochalasin B treatment of COCs before vitrification exerted a negative effect on oocyte survival. After in vitro maturation, the number of vitrified oocytes with abnormal spindle and chromatin configuration was significantly higher compared to control oocytes, independently of the presence or absence of cumulus cells. The removal of cumulus cells combined with vitrification significantly decreased the MPF and MAPK levels. This study provides evidence that the removal of cumulus cells before vitrification enhances oocyte survival and meiotic competence, while impairing the activity of important proteins that could affect the developmental competence of oocytes.  相似文献   

15.
16.
Meiotic maturation and fertilization are metabolically demanding processes, and thus the mammalian oocyte is highly susceptible to changes in nutrient availability. O‐GlcNAcylation—the addition of a single sugar residue (O‐linked β‐N‐acetylglucosamine) on proteins—is a posttranslational modification that acts as a cellular nutrient sensor and likely modulates the function of oocyte proteins. O‐GlcNAcylation is mediated by O‐GlcNAc transferase (OGT), which adds O‐GlcNAc onto proteins, and O‐GlcNAcase (OGA), which removes it. Here we investigated O‐GlcNAcylation dynamics in bovine and human oocytes during meiosis and determined the developmental sequelae of its perturbation. OGA, OGT, and multiple O‐GlcNAcylated proteins were expressed in bovine cumulus oocyte complexes (COCs), and they were localized throughout the gamete but were also enriched at specific subcellular sites. O‐GlcNAcylated proteins were concentrated at the nuclear envelope at prophase I, OGA at the cortex throughout meiosis, and OGT at the meiotic spindles. These expression patterns were evolutionarily conserved in human oocytes. To examine O‐GlcNAc function, we disrupted O‐GlcNAc cycling during meiotic maturation in bovine COCs using Thiamet‐G (TMG), a highly selective OGA inhibitor. Although TMG resulted in a dramatic increase in O‐GlcNAcylated substrates in both cumulus cells and the oocyte, there was no effect on cumulus expansion or meiotic progression. However, zygote development was significantly compromised following in vitro fertilization of COCs matured in TMG due to the effects on sperm penetration, sperm head decondensation, and pronuclear formation. Thus, proper O‐GlcNAc homeostasis during meiotic maturation is important for fertilization and pronuclear stage development.  相似文献   

17.
18.
Oxidative stress negatively affects the in vitro maturation (IVM) of oocytes. Procyanidin B1 (PB1) is a natural polyphenolic compound that has antioxidant properties. In this study, we investigated the effect of PB1 supplementation during IVM of porcine oocytes. Treatment with 100 μM PB1 significantly increased the MII oocytes rate (p <0.05), the parthenogenetic (PA) blastocyst rate (p <0.01) and the total cell number in the PA blastocyst (p < 0.01) which were cultured in regular in vitro culture (IVC) medium. The PA blastocyst rate of regular MII oocytes activated and cultured in IVC medium supplemented with 100 and 150 μM PB1 significantly increased compared with control (p < 0.01 and p < 0.05). We also evaluated the reactive oxygen species (ROS) levels, mitochondrial membrane potential (Δψm) levels, glutathione (GSH) levels, and apoptotic levels in MII oocytes and cumulus cells following 100 μM PB1 treatment. The results showed that the PB1 supplementation decreased ROS production and apoptotic levels. In addition, PB1 was found to increase Δψm levels and GSH levels. In conclusion, PB1 inhibited apoptosis of oocytes and cumulus cells by reducing oxidative stress. Moreover, PB1 improved the quality of oocytes and promoted PA embryo development. Taken together, our results suggest that PB1 is a promising antioxidant additive for IVM of oocytes.  相似文献   

19.
20.
Cumulus cells of the oocyte play important roles in in vitro maturation and subsequent development. One of the routes by which the factors are transmitted from cumulus cells to the oocyte is gap junctional communication (GJC). The function of cumulus cells in in vitro maturation of porcine oocytes was investigated by using a gap junction inhibitor, heptanol. Cumulus-oocyte complexes (COCs) were collected from the ovaries of slaughtered gilts by aspiration. After selection of COCs with intact cumulus cell layers and uniform cytoplasm, they were cultured in a medium with 0, 1, 5, or 10 mM of heptanol for 48 h. After culture in vitro, one group of oocytes was assessed for nuclear maturation and glutathione (GSH) content, and another group was assigned to in vitro fertilization and assessed for the penetrability of oocytes and the degree of progression to male pronuclei (MPN) of penetrated spermatozoa. At the end of in vitro maturation, the oocytes reached metaphase II at a high rate (about 80%) regardless of the presence of heptanol at various concentrations. Cumulus cell expansion and the morphology of oocytes cultured in the medium with heptanol were similar to those of control COCs matured without heptanol. The amount of GSH in cultured oocytes tended to decrease as the concentration of heptanol in the medium was increased. Although there was no difference in the rates of penetrated oocytes cultured in media with different concentrations of heptanol, the proportion of oocytes forming MPN after insemination decreased significantly (P < 0.01) at all concentrations tested. A higher rate of sperm (P < 0.01) failed to degrade their nuclear envelopes after penetration into the oocytes that were treated with heptanol. GJC between the oocyte and cumulus cells might play an important role in regulating the cytoplasmic factor(s) responsible for the removal of sperm nuclear envelopes as well as GSH inflow from cumulus cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号