首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Polymer aggregation plays a critical role in the miscibility of materials and the performance of all‐polymer solar cells (APSCs). However, many aspects of how polymer texturing and aggregation affect photoactive blend film microstructure and photovoltaic performance are poorly understood. Here the effects of aggregation in donor–acceptor blends are studied, in which the number‐average molecular weights (Mns) of both an amorphous donor polymer, poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)] ( PBDTT‐FTTE ) and a semicrystalline acceptor polymer, poly{[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} ( P(NDI2OD‐T2) ) are systematically varied. The photovoltaic performance is correlated with active layer microstructural and optoelectronic data acquired by in‐depth transmission electron microscopy, grazing incidence wide‐angle X‐ray scattering, thermal analysis, and optical spectroscopic measurements. Coarse‐grained modeling provides insight into the effects of polymer aggregation on the blend morphology. Notably, the computed average distance between the donor and the acceptor polymers correlates well with solar cell photovoltaic metrics such as short‐circuit current density (Jsc) and represents a useful index for understanding/predicting active layer blend material intermixing trends. Importantly, these results demonstrate that for polymers with different texturing tendencies (amorphous/semicrystalline), the key for optimal APSC performance, photovoltaic blend morphology can be controlled via both donor and acceptor polymer aggregation.  相似文献   

2.
Designing polymers that facilitate exciton dissociation and charge transport is critical for the production of highly efficient all‐polymer solar cells (all‐PSCs). Here, the development of a new class of high‐performance naphthalenediimide (NDI)‐based polymers with large dipole moment change (Δµge) and delocalized lowest unoccupied molecular orbital (LUMO) as electron acceptors for all‐PSCs is reported. A series of NDI‐based copolymers incorporating electron‐withdrawing cyanovinylene groups into the backbone (PNDITCVT‐R) is designed and synthesized with 2‐hexyldecyl (R = HD) and 2‐octyldodecyl (R = OD) side chains. Density functional theory calculations reveal an enhancement in Δµge and delocalization of the LUMO upon the incorporation of cyanovinylene groups. All‐PSCs fabricated from these new NDI‐based polymer acceptors exhibit outstanding power conversion efficiencies (7.4%) and high fill factors (65%), which is attributed to efficient exciton dissociation, well‐balanced charge transport, and suppressed monomolecular recombination. Morphological studies by grazing X‐ray scattering and resonant soft X‐ray scattering measurements show the blend films containing polymer donor and PNDITCVT‐R acceptors to exhibit favorable face‐on orientation and well‐mixed morphology with small domain spacing (30–40 nm).  相似文献   

3.
Considering that a high compatibility at hybrid organic/inorganic interfaces can be achieved using polar and hydrophilic functionalities, this approach is used to improve inverted polymer solar cell performance by introducing nonionic phosphonate side chains (at 0%, 5%, 15%, and 30% substitution levels) into a series of isoindigo‐based polymers (PIIGDT‐Pn). This approach led to ≈20% improvement in power conversion efficiency compared to a nonmodified control polymer, via an increased short‐circuit current (J SC). This enhancement is believed to stem from reduced nongerminate recombination and improved charge carried extraction when the level of phosphonate substitution is optimized. These results are substantiated by a combination of detailed electrical measurements including space‐charged limited current modeling, light intensity–dependent photocurrent (J ph) analysis, and morphological studies (grazing‐incidence wide‐angle X‐ray scattering and atomic force microscopy). This is the first practical report demonstrating the use of nonionic polar side chains to control charge carrier dynamics in an existing photovoltaic polymer structure. It is envisioned that this simple strategy may be applied to other material systems and yield new materials with the potential for even higher performance.  相似文献   

4.
A pair of polymers, PBDTBT and PBDTDTBT , was synthesized for application in polymer solar cells (PSCs). Although these two polymers have similar absorption bands and molecular energy levels, PBDTDTBT exhibits much better photovoltaic performance in polymer solar cell (PSC) devices with power conversion efficiency (PCE) of 7.4%. To understand the differences between PBDTDTBT and PBDTBT , we have investigated the correlations of the molecular structure, morphology, dynamics and efficiency of these two polymers. A theoretical investigation using density functional theory (DFT) and time‐dependent DFT (TDDFT) has been employed to investigate the electron density and electron delocalization extent of the unimers. TEM data showed that PBDTDTBT phase separates from PC71BM, while PBDTBT suffers from having a proper morphology on different processing conditions. Grazing incidence wide angle X‐ray diffraction (GIWAXD) was used to probe the crystal structure of the polymers in thin film. A polymorph crystal structure was observed for PBDTBT . Grazing incidence small angle X‐ray scattering (GISAXS) was used to probe the size scale of phase separation, with an optimized 25 nm feature size observed for PBDTDTBT /PC71BM blends, which agrees well with TEM results. Femtosecond transient absorption (TA) spectroscopy was used to probe the dynamics of the fundamental processes in organic photovoltaic (OPV) materials, such as charge separation and recombination. The enhanced absorption coefficient, good charge separation, optimal phase separation and higher charge mobility all contribute to the high PCE of the PBDTDTBT /PC71BM devices.  相似文献   

5.
Understanding the correlation between polymer aggregation, miscibility, and device performance is important to establish a set of chemistry design rules for donor polymers with nonfullerene acceptors (NFAs). Employing a donor polymer with strong temperature‐dependent aggregation, namely PffBT4T‐2OD [poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3″′‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2″′‐quaterthiophen‐5,5‐diyl)], also known as PCE‐11 as a base polymer, five copolymer derivatives having a different thiophene linker composition are blended with the common NFA O‐IDTBR to investigate their photovoltaic performance. While the donor polymers have similar optoelectronic properties, it is found that the device power conversion efficiency changes drastically from 1.8% to 8.7% as a function of thiophene content in the donor polymer. Results of structural characterization show that polymer aggregation and miscibility with O‐IDTBR are a strong function of the chemical composition, leading to different donor–acceptor blend morphology. Polymers having a strong tendency to aggregate are found to undergo fast aggregation prior to liquid–liquid phase separation and have a higher miscibility with NFA. These properties result in smaller mixed donor–acceptor domains, stronger PL quenching, and more efficient exciton dissociation in the resulting cells. This work indicates the importance of both polymer aggregation and donor–acceptor interaction on the formation of bulk heterojunctions in polymer:NFA blends.  相似文献   

6.
The synthesis and characterization of new semiconducting materials is essential for developing high‐efficiency organic solar cells. Here, the synthesis, physiochemical properties, thin film morphology, and photovoltaic response of ITN‐F4 and ITzN‐F4, the first indacenodithienothiophene nonfullerene acceptors that combine π‐extension and fluorination, are reported. The neat acceptors and bulk‐heterojunction blend films with fluorinated donor polymer poly{[4,8‐bis[5‐(2‐ethylhexyl)‐4‐fluoro‐2‐thienyl]benzo[1,2‐b:4,5‐b′]‐dithiophene‐2,6‐diyl]‐alt‐[2,5‐thiophenediyl[5,7‐bis(2‐ethylhexyl)‐4,8‐dioxo‐4H,8H‐benzo[1,2‐c:4,5‐c′]dithiophene‐1,3‐diyl]]} (PBDB‐TF, also known as PM6) are investigated using a battery of techniques, including single crystal X‐ray diffraction, fs transient absorption spectroscopy (fsTA), photovoltaic response, space‐charge‐limited current transport, impedance spectroscopy, grazing incidence wide angle X‐ray scattering, and density functional theory level computation. ITN‐F4 and ITzN‐F4 are found to provide power conversion efficiencies greater and internal reorganization energies less than their non‐π‐extended and nonfluorinated counterparts when paired with PBDB‐TF. Additionally, ITN‐F4 and ITzN‐F4 exhibit favorable bulk‐heterojunction relevant single crystal packing architectures. fsTA reveals that both ITN‐F4 and ITzN‐F4 undergo ultrafast hole transfer (<300 fs) in films with PBDB‐TF, despite excimer state formation in both the neat and blend films. Taken together and in comparison to related structures, these results demonstrate that combined fluorination and π‐extension synergistically promote crystallographic π‐face‐to‐face packing, increase crystallinity, reduce internal reorganization energies, increase interplanar π–π electronic coupling, and increase power conversion efficiency.  相似文献   

7.
The microstructure of the polymer PBDTTT‐EFT and blends with the fullerene derivative PC71BM that achieve solar conversion efficiencies of over 9% is comprehensively investigated. A combination of synchrotron techniques are employed including surface‐sensitive near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy and bulk‐sensitive grazing‐incidence wide angle X‐ray scattering (GIWAXS). A preferential “face‐on” orientation of PBDTTT‐EFT is observed in the bulk of both pristine and blend thin films, with π–π stacking largely normal to the substrate, which is thought to be beneficial for charge transport. At the surface of the blend, a slight “edge‐on” structure of the polymer is observed with side‐chains aligned normal to the substrate. The effect of the solvent additive 1,8‐diiodooctane (DIO) on solar cell efficiency and film microstructure is also investigated, where the addition of 3 vol% DIO results in an efficiency increase from ≈6.4% to ≈9.5%. GIWAXS studies indicate that the addition of DIO improves the crystallization of the polymer. Furthermore, atomic force microscopy and transmission electron microscopy are employed to image surface and bulk morphology revealing that DIO suppresses the formation of large PC71BM aggregates.  相似文献   

8.
Organic/polymer semiconductors provide unique possibilities and flexibility in tailoring their optoelectronic properties to match specific application demands. One of the key factors contributing to the rapid and continuous progress of organic photovoltaics (OPVs) is the control and optimization of photoactive‐layer morphology. The impact of morphology on photovoltaic parameters has been widely observed. However, the highly complex and multilength‐scale morphology often formed in efficient OPV devices consisting of compositionally similar components impose obstacles to conventional morphological characterizations. In contrast, due to the high compositional and orientational sensitivity, resonant soft X‐ray scattering (R‐SoXS), and related techniques lead to tremendous progress of characterization and comprehension regarding the complex mesoscale morphology in OPVs. R‐SoXS is capable of quantifying the domain characteristics, and polarized soft X‐ray scattering (P‐SoXS) provides quantitative information on orientational ordering. These morphological parameters strongly correlate the fill factor (FF), open‐circuit voltage (Voc), as well as short‐circuit current (Jsc) in a wider range of OPV devices, including recent record‐efficiency polymer:fullerene solar cells and 12%‐efficiency fullerene‐free OPVs. This progress report will delineate the soft X‐ray scattering methodology and its future challenges to characterize and understand functional organic materials and provide a non‐exhaustive overview of R‐SoXS characterization and its implication to date.  相似文献   

9.
Side‐chain engineering is an important strategy for optimizing photovoltaic properties of organic photovoltaic materials. In this work, the effect of alkylsilyl side‐chain structure on the photovoltaic properties of medium bandgap conjugated polymer donors is studied by synthesizing four new polymers J70 , J72 , J73 , and J74 on the basis of highly efficient polymer donor J71 by changing alkyl substituents of the alkylsilyl side chains of the polymers. And the photovoltaic properties of the five polymers are studied by fabricating polymer solar cells (PSCs) with the polymers as donor and an n‐type organic semiconductor (n‐OS) m‐ITIC as acceptor. It is found that the shorter and linear alkylsilyl side chain could afford ordered molecular packing, stronger absorption coefficient, higher charge carrier mobility, thus results in higher Jsc and fill factor values in the corresponding PSCs. While the polymers with longer or branched alkyl substituents in the trialkylsilyl group show lower‐lying highest occupied molecular orbital energy levels which leads to higher Voc of the PSCs. The PSCs based on J70 :m‐ITIC and J71 :m‐ITIC achieve power conversion efficiency (PCE) of 11.62 and 12.05%, respectively, which are among the top values of the PSCs reported in the literatures so far.  相似文献   

10.
Length of the terminal alkyl chains at dicyanovinyl (DCV) groups of two dithienosilole (DTS) containing small molecules ( DTS(Oct)2‐(2T‐DCV‐Me)2 and DTS(Oct)2‐(2T‐DCV‐Hex)2 ) is investigated to evaluate how this affects the molecular solubility and blend morphology as well as their performance in bulk heterojunction organic solar cells (OSCs). While the DTS(Oct)2‐(2T‐DCV‐Me)2 (a solubility of 5 mg mL?1) system exhibits both high short circuit current density (J sc) and high fill factor, the DTS(Oct)2‐(2T‐DCV‐Hex)2 (a solubility of 24 mg mL?1) system in contrast suffers from a poor blend morphology as examined by atomic force morphology and grazing incidence X‐ray scattering measurements, which limit the photovoltaic properties. The charge generation, transport, and recombination dynamics associated with the limited device performance are investigated for both systems. Nongeminate recombination losses in DTS(Oct)2‐(2T‐DCV‐Hex)2 system are demonstrated to be significant by combining space charge limited current analysis and light intensity dependence of current–voltage characteristics in combination with photogenerated charge carrier extraction by linearly increasing voltage and transient photovoltage measurements. DTS(Oct)2‐(2T‐DCV‐Me)2 in contrast performs nearly ideal with no evidence of nongeminate recombination, space charge effects, or mobility limitation. These results demonstrate the importance of alkyl chain engineering for solution‐processed OSCs based on small molecules as an essential design tool to overcome transport limitations.  相似文献   

11.
A series of alkyl, alkoxyl, and alkylthio substituted A–π–D–π–A type nonfullerene acceptors (NFAs) IDTCN‐C , IDTCN‐O, and IDTCN‐S are designed and synthesized. The introduction of a lateral side chain at the outer position of the π bridge unit can endow the terminal moiety with a confined planar conformation due to the steric hindrance. Thus, compared with nonsubstituted NFA ( IDTT2F ), these acceptors tend to form favorable face‐on orientation and exhibit strong crystallinity as verified with grazing‐incidence wide‐angle X‐ray scattering measurement. Moreover, the variation of side chain can significantly change the lowest unoccupied molecular orbital (LUMO) energy level of acceptors. As state‐of‐the‐art NFAs, a power conversion efficiency of 13.28% (Voc = 0.91 V, Jsc = 19.96 mA cm?2, and FF = 73.2%) is obtained for the as‐cast devices based on IDTCN‐O , which is among the highest value reported in literature. The excellent photovoltaic performance for IDTCN‐O can be attributed to its slightly up‐shifted LUMO level and more balanced charge transport. This research demonstrates side chain engineering is an effective way to achieve high efficiency organic solar cells.  相似文献   

12.
The complex microstructure of organic semiconductor mixtures continues to obscure the connection between the active layer morphology and photovoltaic device performance. For example, the ubiquitous presence of mixed phases in the active layer of polymer/fullerene solar cells creates multiple morphologically distinct interfaces which are capable of exciton dissociation or charge recombination. Here, it is shown that domain compositions and fullerene aggregation can strongly modulate charge photogeneration at ultrafast timescales through studies of a model system, mixtures of a low band‐gap polymer, poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]germole)‐2,6‐diyl‐alt‐(2,1,3‐benzothia‐diazole)‐4,7‐diyl], and [6,6]‐phenyl‐C71‐butyric acid methyl ester. Structural characterization using energy‐filtered transmission electron microscopy (EFTEM) and resonant soft X‐ray scattering shows similar microstructures even with changes in the overall film composition. Composition maps generated from EFTEM, however, demonstrate that compositions of mixed domains vary significantly with overall film composition. Furthermore, the amount of polymer in the mixed domains is inversely correlated with device performance. Photoinduced absorption studies using ultrafast infrared spectroscopy demonstrate that polaron concentrations are highest when mixed domains contain the least polymer. Grazing‐incidence X‐ray scattering results show that larger fullerene coherence lengths are correlated to higher polaron yields. Thus, the purity of the mixed domains is critical for efficient charge photogeneration because purity modulates fullerene aggregation and electron delocalization.  相似文献   

13.
Poly(benzo[1,2‐b:4,5‐b′]dithiophene–alt–thieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD) polymer donors with linear side‐chains yield bulk‐heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl‐C71‐butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub‐nanosecond geminate recombination. In turn the yield of long‐lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X‐ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin‐film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.  相似文献   

14.
In this work, the detailed morphology studies of polymer poly(3‐hexylthiophene‐2,5‐diyl) (P3HT):fullerene(PCBM) and polymer(P3HT):polymer naphthalene diimide thiophene (PNDIT) solar cell are presented to understand the challenge for getting high performance all‐polymer solar cells. The in situ X‐ray scattering and optical interferometry and ex situ hard and soft X‐ray scattering and imaging techniques are used to characterize the bulk heterojunction (BHJ) ink during drying and in dried state. The crystallization of P3HT polymers in P3HT:PCBM bulk heterojunction shows very different behavior compared to that of P3HT:PNDIT BHJ due to different mobilities of P3HT in the donor:acceptor glass. Supplemented by the ex situ grazing incidence X‐ray diffraction and soft X‐ray scattering, PNDIT has a lower tendency to form a mixed phase with P3HT than PCBM, which may be the key to inhibit the donor polymer crystallization process, thus creating preferred small phase separation between the donor and acceptor polymer.  相似文献   

15.
The ratio of the donor and acceptor components in bulk heterojunction (BHJ) organic solar cells is a key parameter for achieving optimal power conversion efficiency (PCE). However, it has been recently found that a few BHJ blends have compositional tolerance and achieve high performance in a wide range of donor to acceptor ratios. For instance, the X2 :PC61BM system, where X2 is a molecular donor of intermediate dimensions, exhibits a PCE of 6.6%. Its PCE is relatively insensitive to the blend ratio over the range from 7:3 to 4:6. The effect of blend ratio of X2 /PC61BM on morphology and device performance is therefore systematically investigated by using the structural characterization techniques of energy‐filtered transmission energy microscopy (EF‐TEM), resonant soft X‐ray scattering (R‐SoXS) and grazing incidence wide angle X‐ray scattering (GIWAXS). Changes in blend ratio do not lead to obvious differences in morphology, as revealed by R‐SoXS and EF‐TEM. Rather, there is a smooth evolution of a connected structure with decreasing domain spacing from 8:2 to 6:4 blend ratios. Domain spacing remains constant from 6:4 to 4:6 blend ratios, which suggests the presence of continuous phases with proper domain size that may provide access for charge carriers to reach their corresponding electrodes.  相似文献   

16.
The importance of morphology to organic solar cell performance is well known, but to date, the lack of quantitative, nanoscale and statistical morphological information has hindered obtaining direct links to device function. Here resonant X‐ray scattering and microscopy are combined to quantitatively measure the nanoscale domain size, distribution and composition in high efficiency solar cells based on PTB7 and PC71BM. The results show that the solvent additive diiodooctane dramatically shrinks the domain size of pure fullerene agglomerates that are embedded in a polymer‐rich 70/30 wt.% molecularly mixed matrix, while preserving the domain composition relative to additive‐free devices. The fundamental miscibility between the species – measured to be equal to the device's matrix composition – is likely the dominant factor behind the overall morphology with the additive affecting the dispersion of excess fullerene. As even the molecular ordering measured by X‐ray diffraction is unchanged between the two processing routes the change in the distribution of domain size and therefore increased domain interface is primarily responsible for the dramatic increase in device performance. While fullerene exciton harvesting is clearly one significant cause of the increase owing to smaller domains, a measured increase in harvesting from the polymer species indicates that the molecular mixing is not the reason for the high efficiency in this system. Rather, excitations in the polymer likely require proximity to a pure fullerene phase for efficient charge separation and transport. Furthermore, in contrast to previous measurements on a PTB7‐based system, a hierarchical morphology was not observed, indicating that it is not necessary for high performance.  相似文献   

17.
Morphology control is one of the key strategies in optimizing the performance of organic photovoltaic materials, particularly for diketopyrrolopyrrole (DPP)‐based donor polymers. The design of DPP‐based polymers that provide high power conversion efficiency (PCE) presents a significant challenge that requires optimization of both energetics and morphology. Herein, a series of high performance, small band gap DPP‐based terpolymers are designed via two‐step side chain engineering, namely introducing alternating short and long alkyls for reducing the domain spacing and inserting alkylthio for modulating the energy levels. The new DPP‐based terpolymers are compared to delineate how the side chain impacts the mesoscale morphology. By employing the alkylthio‐substituted terpolymer PBDPP‐TS, the new polymer solar cell (PSC) device realizes a good balance of a high V oc of 0.77 V and a high J sc over 15 mA cm?2, and thus realizes desirable PCE in excess of 8% and 9.5% in single junction and tandem PSC devices, respectively. The study indicates better control of domain purity will greatly improve performance of single junction DPP‐based PSCs toward 10% efficiency. More significantly, the utility of this stepwise side chain engineering can be readily expanded to other classes of well‐defined copolymers and triggers efficiency breakthroughs in novel terpolymers for photovoltaic and related electronic applications.  相似文献   

18.
The complex intermixing morphology is critical for the performance of the nanostructured polymer:fullerene bulk heterojunction (BHJ) solar cells. Here, time resolved in situ grazing incidence X‐ray diffraction and grazing incidence small angle X‐ray scattering are used to track the structure formation of BHJ thin films formed from the donor polymer poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) with different fullerene derivative acceptors. The formation of stable bimolecular crystals through the intercalation of fullerene molecules between the side chains of polymer crystallites is investigated. Such systems exhibit more efficient exciton dissociation but lower photo‐conductance and faster decay of charges. On the basis of the experimental observations, intercalation obviously takes place before or with the formation of the crystalline polymer domains. It results in more stable structures whose volume remains constant upon further drying. Three distinct periods of drying are observed and the formation of unidimensional fullerene channels along the π‐stacking direction of polymer crystallites is confirmed.  相似文献   

19.
The temperature‐dependent aggregation behavior of PffBT4T polymers used in organic solar cells plays a critical role in the formation of a favorable morphology in fullerene‐based devices. However, there is little investigation into the impact of donor/acceptor ratio on morphology tuning, especially for nonfullerene acceptors (NFAs). Herein, the influence of composition on morphology is reported for blends of PffBT4T‐2DT with two NFAs, O‐IDTBR and O‐IDFBR. The monotectic phase behavior inferred from differential scanning calorimetry provides qualitative insight into the interplay between solid–liquid and liquid–liquid demixing. Transient absorption spectroscopy suggests that geminate recombination dominates charge decay and that the decay rate is insensitive to composition, corroborated by negligible changes in open‐circuit voltage. Exciton lifetimes are also insensitive to composition, which is attributed to the signal being dominated by acceptor excitons which are formed and decay in domains of similar size and purity irrespective of composition. A hierarchical morphology is observed, where the composition dependence of size scales and scattering intensity from resonant soft X‐ray scattering (R‐SoXS) is dominated by variations in volume fractions of polymer/polymer‐rich domains. Results suggest an optimal morphology where polymer crystallite size and connectivity are balanced, ensuring a high probability of hole extraction via such domains.  相似文献   

20.
The side‐chain architecture of alternating copolymers based on thiophene and quinoxaline (TQ) is found to strongly influence the solubility and photovoltaic performance. In particular, TQ polymers with different linear or branched alkyloxy‐phenyl side chains on the quinoxaline unit are compared. Attaching the linear alkyloxy side‐chain segment at the meta‐ instead of the para‐position of the phenyl ring reduces the planarity of the backbone as well as the ability to order. However, the delocalisation across the backbone is not affected, which permits the design of high‐performance TQ polymers that do not aggregate in solution. The use of branched meta‐(2‐ethylhexyl)oxy‐phenyl side‐chains results in a TQ polymer with an intermediate degree of order. The reduced tendency for aggregation of TQ polymers with linear meta‐alkyloxy‐phenyl persists in the solid state. As a result, it is possible to avoid the decrease in charge‐transfer state energy that is observed for bulk‐heterojunction blends of more ordered TQ polymers and fullerenes. The associated gain in open‐circuit voltage of disordered TQ:fullerene solar cells, accompanied by a higher short‐circuit current density, leads to a higher power conversion efficiency overall. Thus, in contrast to other donor polymers, for TQ polymers there is no need to compromise between solubility and photovoltaic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号