首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lithium–sulfur (Li–S) battery is considered a promising candidate for the next generation of energy storage system due to its high specific energy density and low cost of raw materials. However, the practical application of Li–S batteries is severely limited by several weaknesses such as the shuttle effect of polysulfides and the insulation of the electrochemical products of sulfur and Li2S/Li2S2. Here, by doping nitrogen and integrating highly dispersed cobalt catalysts, a porous carbon nanocage derived from glucose adsorbed metal–organic framework is developed as the host for a sulfur cathode. This host structure combines the reported positive effects, including high conductivity, high sulfur loading, effective stress release, fast lithium‐ion kinetics, fast interface charge transport, fast redox of Li2Sn, and strong physical/chemical absorption, achieving a long cycle life (86% of capacity retention at 1C within 500 cycles) and high rate performance (600 mAh g?1 at 5C) for a Li–S battery. By combining experiments and density functional theoretical calculations, it is demonstrated that the well‐dispersed cobalt clusters play an important role in greatly improving the diffusion dynamics of lithium, and enhance the absorption and conversion capability of polysulfides in the host structure.  相似文献   

2.
Herein, a flexible method is designed to engineer nitrogen‐doped carbon materials (NC) with different functional and structural specialties involving N‐doping level, graphitization, and surface area via tuning the carbonization temperature of the pre‐prepared zeolitic imidazolate framework‐8 (ZIF‐8 ) crystals. With the aim to unveil the effect of these features on the electrochemical performance of sulfur cathode, these samples are evaluated as sulfur host and comprehensively investigated. NC‐800 (800 °C, 10.45%N, 1032.4 m2 g?1) exhibits the best electrochemical capability comparing with NC‐700 (700 °C, 16.59%N, 891.4 m2 g?1) and NC‐900 (900 °C, 7.59%N, 987.6 m2 g?1). High surface area and N‐doping can work together to well increase the capacity of sulfur cathode, thanks to the improved transportation of charge carriers and effective anchoring of active sulfur, while the latter specialty just makes sulfur cathode have decent capacity in case of low surface area. Graphitization and quaternary nitrogen favorably improve the electric conductivity of the electrode, empowering the improvement of discharge capacity initially and rendering the good cyclability cooperatively relying on the effective immobilization of active materials. The related results suggest the significance of rational design of carbon maxtrix for sulfur to improve the performance of Li‐S batteries.  相似文献   

3.
Li2S is one of the most promising cathode materials for Li‐ion batteries because of its high theoretical capacity and compatibility with Li‐metal‐free anode materials. However, the poor conductivity and electrochemical reactivity lead to low initial capacity and severe capacity decay. In this communication, a nitrogen and phosphorus codoped carbon (N,P–C) framework derived from phytic acid doped polyaniline hydrogel is designed to support Li2S nanoparticles as a binder‐free cathode for Li–S battery. The porous 3D architecture of N and P codoped carbon provides continuous electron pathways and hierarchically porous channels for Li ion transport. Phosphorus doping can also suppress the shuttle effect through strong interaction between sulfur and the carbon framework, resulting in high Coulombic efficiency. Meanwhile, P doping in the carbon framework plays an important role in improving the reaction kinetics, as it may help catalyze the redox reactions of sulfur species to reduce electrochemical polarization, and enhance the ionic conductivity of Li2S. As a result, the Li2S/N,P–C composite electrode delivers a stable capacity of 700 mA h g?1 with average Coulombic efficiency of 99.4% over 100 cycles at 0.1C and an areal capacity as high as 2 mA h cm?2 at 0.5C.  相似文献   

4.
Despite their high theoretical energy density and low cost, lithium–sulfur batteries (LSBs) suffer from poor cycle life and low energy efficiency owing to the polysulfides shuttle and the electronic insulating nature of sulfur. Conductivity and polarity are two critical parameters for the search of optimal sulfur host materials. However, their role in immobilizing polysulfides and enhancing redox kinetics for long‐life LSBs are not fully understood. This work has conducted an evaluation on the role of polarity over conductivity by using a polar but nonconductive platelet ordered mesoporous silica (pOMS) and its replica platelet ordered mesoporous carbon (pOMC), which is conductive but nonpolar. It is found that the polar pOMS/S cathode with a sulfur mass fraction of 80 wt% demonstrates outstanding long‐term cycle stability for 2000 cycles even at a high current density of 2C. Furthermore, the pOMS/S cathode with a high sulfur loading of 6.5 mg cm?2 illustrates high areal and volumetric capacities with high capacity retention. Complementary physical and electrochemical probes clearly show that surface polarity and structure are more dominant factors for sulfur utilization efficiency and long‐life, while the conductivity can be compensated by the conductive agent involved as a required electrode material during electrode preparation. The present findings shed new light on the design principles of sulfur hosts towards long‐life and highly efficient LSBs.  相似文献   

5.
Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium‐sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g‐1 at a 0.1C current rate and exhibit stable cycling performance. The as‐prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g‐1 at 1C, 861 mAh g‐1 at 5C, and 663 mAh g‐1 at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self‐discharge, and confine the volume expansion on cycling. High capacity, excellent high‐rate performance, and long cycle life render the as‐developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium‐sulfur batteries.  相似文献   

6.
Owing to its high theoretical specific capacity (1166 mA h g?1) and particularly its advantage to be paired with a lithium‐metal‐free anode, lithium sulfide (Li2S) is regarded as a much safer cathode for next‐generation advanced lithium–sulfur (Li–S) batteries. However, the low conductivity of Li2S and particularly the severe “polysulfide shuttle” of lithium polysulfide (LiPS) dramatically hinder their practical application in Li–S batteries. To address such issues, herein a bifuctional 3D metal sulfide‐decorated carbon sponge (3DTSC), which is constructed by 1D carbon nanowires cross‐linked with 2D graphene nanosheets with high conductivity and polar 0D metal sulfide nanodots with efficient electrocatalytic activity and strong chemical adsorption capability for LiPSs, is presented. Benefiting from the well‐designed multiscale, multidimensional 3D porous nanoarchitecture with high conductivity, and efficient electrocatalytic and absorption ability, the 3DTSC significantly mitigates LiPS shuttle, improves the utilization of Li2S, and facilitates the transport of electrons and ions. As a result, even with a high Li2S loading of 8 mg cm?2, the freestanding 3DTSC‐Li2S cathode without a polymer binder and metallic current collector delivers outstanding electrochemical performance with a high areal capacity of 8.44 mA h cm?2.  相似文献   

7.
Various host materials have been investigated to address the intrinsic drawbacks of lithium sulfur batteries, such as the low electronic conductivity of sulfur and inevitable decay in capacity during cycling. Besides the widely investigated carbonaceous materials, metal oxides have drawn much attention because they form strong chemical bonds with the soluble lithium polysulfides. Here, mesoporous Magnéli Ti4O7 microspheres are prepared via an in situ carbothermal reduction that exhibit interconnected mesopores (20.4 nm), large pore volume (0.39 cm3 g?1), and high surface area (197.2 m2 g?1). When the sulfur cathode is embedded in a matrix of mesoporous Magnéli Ti4O7 microspheres, it exhibits a superior reversible capacity of 1317.6 mA h g?1 at moderate current (C/10) and a low decay in capacity of 12% after 400 cycles at C/5. Strong chemical bonding of the lithium polysulfides to Ti4O7, as well as effective physical trapping in the mesopores and voids in the matrix are considered responsible for the improved electrochemical performance. A mechanism of the physical and chemical interactions between mesoporous Magnéli Ti4O7 microspheres and sulfur is proposed based on systematic investigations.  相似文献   

8.
Orthorhombic α‐MoO3 is a potential anode material for lithium‐ion batteries due to its high theoretical capacity of 1100 mAh g?1 and excellent structural stability. However, its intrinsic poor electronic conductivity and high volume expansion during the charge–discharge process impede it from achieving a high practical capacity. A novel composite of α‐MoO3 nanobelts and single‐walled carbon nanohorns (SWCNHs) is synthesized by a facile microwave hydrothermal technique and demonstrated as a high‐performance anode material for lithium‐ion batteries. The α‐MoO3/SWCNH composite displays superior electrochemical properties (654 mAh g?1 at 1 C), excellent rate capability (275 mAh g?1 at 5 C), and outstanding cycle life (capacity retention of >99% after 3000 cycles at 1 C) without any cracking of the electrode. The presence of SWCNHs in the composite enhances the electrochemical properties of α‐MoO3 by acting as a lithium storage material, electronic conductive medium, and buffer against pulverization.  相似文献   

9.
The practical viability of Li–S cells depends on achieving high electrochemical utilization of sulfur under realistic conditions, such as high sulfur loading and low electrolyte/sulfur (E/S) ratio. Here, metallic 2D 1T′‐ReS2 nanosheets in situ grown on 1D carbon nanotubes (ReS2@CNT) via a facile hydrothermal reaction are presented to efficiently suppress the “polysulfide shuttle” and promote lithium polysulfide (LiPS) redox reactions. The designed ReS2@CNT nanoarchitecture with high conductivity and rich nanoporosity not only facilitates electron transfer and ion diffusion, but also possesses abundant active sites providing high catalytic activity for efficient LiPS conversion. Li–S cells fabricated with ReS2@CNT exhibit high capacity with superior long‐term cyclability with a capacity retention of 71.7% over 1000 cycles even at a high current density of 1C (1675 mA g?1). Also, pouch cells fabricated with the ReS2@CNT/S cathode maintain a low capacity fade rate of 0.22% per cycle. Furthermore, the electrocatalysis mechanism is revealed based on electrochemical studies, theoretical calculations, and in situ Raman spectroscopy.  相似文献   

10.
Hybrid nanostructures containing 1D carbon nanotubes and 2D graphene sheets have many promising applications due to their unique physical and chemical properties. In this study, the authors find Prussian blue (dehydrated sodium ferrocyanide) can be converted to N‐doped graphene–carbon nanotube hybrid materials through a simple one‐step pyrolysis process. Through field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Raman spectra, atomic force microscopy, and isothermal analyses, the authors identify that 2D graphene and 1D carbon nanotubes are bonded seamlessly during the growth stage. When used as the sulfur scaffold for lithium–sulfur batteries, it demonstrates outstanding electrochemical performance, including a high reversible capacity (1221 mA h g?1 at 0.2 C rate), excellent rate capability (458 and 220 mA h g?1 at 5 and 10 C rates, respectively), and excellent cycling stability (321 and 164 mA h g?1 at 5 and 10 C (1 C = 1673 mA g?1) after 1000 cycles). The enhancement of electrochemical performance can be attributed to the 3D architecture of the hybrid material, in which, additionally, the nitrogen doping generates defects and active sites for improved interfacial adsorption. Furthermore, the nitrogen doping enables the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much‐improved cycling performance. Therefore, the hybrid material functions as a redox shuttle to catenate and bind polysulfides, and convert them to insoluble lithium sulfide during reduction. The strategy reported in this paper could open a new avenue for low cost synthesis of N‐doped graphene–carbon nanotube hybrid materials for high performance lithium–sulfur batteries.  相似文献   

11.
Layered lithium nickel oxide (LiNiO2) can provide very high energy density among intercalation cathode materials for lithium‐ion batteries, but suffers from poor cycle life and thermal‐abuse tolerance with large lithium utilization. In addition to stabilization of the active cathode material, a concurrent development of electrolyte systems of better compatibility is critical to overcome these limitations for practical applications. Here, with nonaqueous electrolytes based on exclusively aprotic acyclic carbonates free of ethylene carbonate (EC), superior electrochemical and thermal characteristics are obtained with an ultrahigh‐nickel cathode (LiNi0.94Co0.06O2), capable of reaching a 235 mA h g?1 specific capacity. Pouch‐type graphite|LiNi0.94Co0.06O2 cells in EC‐free electrolytes withstand several hundred charge–discharge cycles with minor degradation at both ambient and elevated temperatures. In thermal‐abuse tests, the cathode at full charge, while reacting aggressively with EC‐based electrolytes below 200 °C, shows suppressed self‐heating without EC. Through 3D chemical and structural analyses, the intriguing impact of EC is visualized in aggravating unwanted surface parasitic reactions and irreversible bulk structural degradation of the cathode at high voltages. These results provide important insights in designing high‐energy electrodes for long‐lasting and reliable lithium‐ion batteries.  相似文献   

12.
The lithium–sulfur batteries are susceptible to the loss of sulfur as dissolved polysulfides in the electrolyte and their ensuing redox shutting effect. The acceleration of the conversion kinetics of dissolved polysulfides into the insoluble sulfur and lithium sulfide via electrocatalysis has the appeal of being a root‐cause solution. MoS2 is the most common electrocatalyst used for this purpose. It is demonstrated that how the effectiveness can be improved by simultaneous cobalt and phosphorus doping of MoS2 nanotubes (P‐Mo0.9Co0.1S2‐2, containing 1.81 at% of P). Cobalt doping induces the transformation of MoS2 from 2H phase to metallic 1T phase, which improves the electrical conductivity of the MoS2. The Co–P coordinated sites on the catalyst surface are highly active for the polysulfide conversion reactions. Consequently, a sulfur cathode with P‐Mo0.9Co0.1S2‐2 can decrease the capacity fade rate from 0.28% per cycle before modification (over 150 cycles at 0.5C rate) to 0.046% per cycle after modification (over 600 cycles at 1C rate). P‐Mo0.9Co0.1S2‐2 also enhances the high rate performance from a capacity of 338 to 931 mAh g?1 at 6C rate. The results of this study provide the first direct evidence of the beneficial effects of heteroatom codoping of polysulfide conversion catalysts.  相似文献   

13.
Lithium–sulfur batteries are a promising high energy output solution for substitution of traditional lithium ion batteries. In recent times research in this field has stepped into the exploration of practical applications. However, their applications are impeded by cycling stability and short life‐span mainly due to the notorious polysulfide shuttle effect. In this work, a multifunctional sulfur host fabricated by grafting highly conductive Co3Se4 nanoparticles onto the surface of an N‐doped 3D carbon matrix to inhibit the polysulfide shuttle and improve the sulfur utilization is proposed. By regulating the carbon matrix and the Co3Se4 distribution, N‐CN‐750@Co3Se4‐0.1 m with abundant polar sites is experimentally and theoretically shown to be a good LiPSs absorbent and a sulfur conversion accelerator. The S/N‐CN‐750@Co3Se4‐0.1 m cathode shows excellent sulfur utilization, rate performance, and cyclic durability. A prolonged cycling test of the as‐fabricated S/N‐CN‐750@Co3Se4‐0.1 m cathode is carried out at 0.2 C for more than 5 months which delivers a high initial capacity of 1150.3 mAh g?1 and retains 531.0 mAh g?1 after 800 cycles with an ultralow capacity reduction of 0.067% per cycle, maintaining Coulombic efficiency of more than 99.3%. The reaction details are characterized and analyzed by ex situ measurements. This work highly emphasizes the potential capabilities of transition‐metal selenides in lithium–sulfur batteries.  相似文献   

14.
The eco‐friendly and low‐cost Co‐free Li1.2Mn0.585Ni0.185Fe0.03O2 is investigated as a positive material for Li‐ion batteries. The electrochemical performance of the 3 at% Fe‐doped material exhibits an optimal performance with a capacity and voltage retention of 70 and 95%, respectively, after 200 cycles at 1C. The effect of iron doping on the electrochemical properties of lithium‐rich layered materials is investigated by means of in situ X‐ray diffraction spectroscopy and galvanostatic intermittent titration technique during the first charge–discharge cycle while high‐resolution transmission electron microscopy is used to follow the structural and chemical change of the electrode material upon long‐term cycling. By means of these characterizations it is concluded that iron doping is a suitable approach for replacing cobalt while mitigating the voltage and capacity degradation of lithium‐rich layered materials. Finally, complete lithium‐ion cells employing Li1.2Mn0.585Ni0.185Fe0.03O2 and graphite show a specific energy of 361 Wh kg?1 at 0.1C rate and very stable performance upon cycling, retaining more than 80% of their initial capacity after 200 cycles at 1C rate. These results highlight the bright prospects of this material to meet the high energy density requirements for electric vehicles.  相似文献   

15.
2D layer‐structured materials are considered a promising candidate as a coupling material in lithium sulfur batteries (LSBs) due to their high surface‐volume ratio and abundant active binding sites, which can efficiently mitigate shuttling of soluble polysulfides. Herein, an electrochemical Li intercalation and exfoliation strategy is used to prepare 2D Sb2S3 nanosheets (SSNSs), which are incorporated onto a separator in LSBs as a new 2D coupling material for the first time. The cells containing a rationally designed separator which is coated with an SSNS/carbon nanotube (CNT) coupling layer deliver a much improved specific capacity with a remarkable 0.05% decay rate for over 200 cycles at a current density of 2 C. The capability of the SSNSs to entrap polysulfides through their favorable interfacial functionality and the high electrical conductivity of the CNT network facilitates recycling of active materials. The first‐principle calculations verify the important roles of SSNSs, which demonstrate ideal binding strengths (1.33–2.14 eV) to entrap Li2Sx as well as a low‐energy barrier (189 meV) for Li diffusion. These findings offer new insights into discovering novel coupling layers for high‐performance LSBs and shed new light on the application of 2D layer‐structured materials in energy storage systems.  相似文献   

16.
Driven by increasing demand for high‐energy‐density batteries for consumer electronics and electric vehicles, substantial progress is achieved in the development of long‐life lithium–sulfur (Li–S) batteries. Less attention is given to Li–S batteries with high volume energy density, which is crucial for applications in compact space. Here, a series of elastic sandwich‐structured cathode materials consisting of alternating VS2‐attached reduced graphene oxide (rGO) sheets and active sulfur layers are reported. Due to the high polarity and conductivity of VS2, a small amount of VS2 can suppress the shuttle effect of polysulfides and improve the redox kinetics of sulfur species in the whole sulfur layer. Sandwich‐structured rGO–VS2/S composites exhibit significantly improved electrochemical performance, with high discharge capacities, low polarization, and excellent cycling stability compared with their bare rGO/S counterparts. Impressively, the tap density of rGO–VS2/S with 89 wt% sulfur loading is 1.84 g cm?3, which is almost three times higher than that of rGO/S with the same sulfur content (0.63 g cm?3), and the volumetric specific capacity of the whole cell is as high as 1182.1 mA h cm?3, comparable with the state‐of‐the‐art reported for energy storage devices, demonstrating the potential for application of these composites in long‐life and high‐energy‐density Li–S batteries.  相似文献   

17.
Constructing 3D hierarchical architecture consisting of 2D hybrid nanosheets is very critical to achieve uppermost and stable electrochemical performance for both lithium‐ion batteries (LIBs) and hydrogen evolution reaction (HER). Herein, a simple synthesis of uniform 3D microspheres assembled from carbon nanosheets with the incorporated MoO2 nanoclusters is demonstrated. The MoO2 nanoclusters can be readily converted into the molybdenum carbide (Mo2C) nanocrystals by using high temperature treatment. Such assembling architecture is highly particular for preventing Mo‐based ultrasmall nanoparticles from coalescing or oxidizing and endowing them with rapid electron transfer. Consequently, the MoO2/C hybrids as LIB anode materials deliver a specific capacity of 625 mA h g?1 at 1600 mA g?1 even after 1000 cycles, which is among the best reported values for MoO2‐based electrode materials. Moreover, the Mo2C/C hybrids also exhibit excellent electrocatalytic activity for HER with small overpotential and robust durability in both acid and alkaline media. The present work highlights the importance of designing 3D structure and controlling ultrasmall Mo‐based nanoparticles for enhancing electrochemical energy conversion and storage applications.  相似文献   

18.
The development of lithium–sulfur batteries is limited by the poor conductivity of sulfur cathodes and soluble long‐chain lithium polysulfides (LPSs), which cause the low utilization of sulfur and the aversive shuttle effect, and further, give rise to self‐discharge, rapid reversible capacity fading, and low Coulombic efficiency. In this work, a novel configuration is built for high‐performance lithium–organosulfur batteries, in which the organosulfur hybrid material and lithium metal are used as the cathode and the anode, respectively, and are separated by a functional separator decorated with nitrogen and sulfur co‐doped reduced graphite oxide. The organosulfur in the cathode prevents the shuttle effect by inhibiting the formation of long‐chain LPSs. In addition, the functional separator effectively adsorbs LPSs escaping from the cathode by electrostatic interactions and further restrains the shuttle effect. These effects are confirmed by density‐functional theory calculations. As a result, this novel configuration provides a high initial discharge capacity of 1364 mAh g?1 at 0.2 C and a high discharge capacity of 750 mAh g?1 at 1 C after 700 cycles with a very low capacity decay rate of 0.037% per cycle.  相似文献   

19.
To achieve the high energy densities demanded by emerging technologies, lithium battery electrodes need to approach the volumetric and specific capacity limits of their electrochemically active constituents, which requires minimization of the inactive components of the electrode. However, a reduction in the percentage of inactive conductive additives limits charge transport within the battery electrode, which results in compromised electrochemical performance. Here, an electrode design that achieves efficient electron and lithium‐ion transport kinetics at exceptionally low conductive additive levels and industrially relevant active material areal loadings is introduced. Using a scalable Pickering emulsion approach, Ni‐rich LiNi0.8Co0.15Al0.05O2 (NCA) cathode powders are conformally coated using only 0.5 wt% of solution‐processed graphene, resulting in an electrical conductivity that is comparable to 5 wt% carbon black. Moreover, the conformal graphene coating mitigates degradation at the cathode surface, thus providing improved electrochemical cycle life. The morphology of the electrodes also facilitates rapid lithium‐ion transport kinetics, which provides superlative rate capability. Overall, this electrode design concurrently approaches theoretical volumetric and specific capacity limits without tradeoffs in cycle life, rate capability, or active material areal loading.  相似文献   

20.
Rechargeable lithium–sulfur batteries have attracted tremendous scientific attention owing to their superior energy density. However, the sulfur electrochemistry involves multielectron redox reactions and complicated phase transformations, while the final morphology of solid‐phase Li2S precipitates largely dominate the battery's performance. Herein, a triple‐phase interface among electrolyte/CoSe2/G is proposed to afford strong chemisorption, high electrical conductivity, and superb electrocatalysis of polysulfide redox reactions in a working lithium–sulfur battery. The triple‐phase interface effectively enhances the kinetic behaviors of soluble lithium polysulfides and regulates the uniform nucleation and controllable growth of solid Li2S precipitates at large current density. Therefore, the cell with the CoSe2/G functional separator delivers an ultrahigh rate cycle at 6.0 C with an initial capacity of 916 mAh g?1 and a capacity retention of 459 mAh g?1 after 500 cycles, and a stable operation of high sulfur loading electrode (2.69–4.35 mg cm?2). This work opens up a new insight into the energy chemistry at interfaces to rationally regulate the electrochemical redox reactions, and also inspires the exploration of related energy storage and conversion systems based on multielectron redox reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号