首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Net grassland carbon flux over a subambient to superambient CO2 gradient   总被引:2,自引:0,他引:2  
Increasing atmospheric CO2 concentrations may have a profound effect on the structure and function of plant communities. A previously grazed, central Texas grassland was exposed to a 200‐µmol mol?1 to 550 µmol mol?1 CO2 gradient from March to mid‐December in 1998 and 1999 using two, 60‐m long, polyethylene‐ covered chambers built directly onto the site. One chamber was operated at subambient CO2 concentrations (200–360 µmol mol?1 daytime) and the other was regulated at superambient concentrations (360–550 µmol mol?1). Continuous CO2 gradients were maintained in each chamber by photosynthesis during the day and respiration at night. Net ecosystem CO2 flux and end‐of‐year biomass were measured in each of 10, 5‐m long sections in each chamber. Net CO2 fluxes were maximal in late May (c. day 150) in 1998 and in late August in 1999 (c. day 240). In both years, fluxes were near zero and similar in both chambers at the beginning and end of the growing season. Average daily CO2 flux in 1998 was 13 g CO2 m?2 day?1 in the subambient chamber and 20 g CO2 m?2 day?1 in the superambient chamber; comparable averages were 15 and 26 g CO2 m?2 day?1 in 1999. Flux was positively and linearly correlated with end‐of‐year above‐ground biomass but flux was not linearly correlated with CO2 concentration; a finding likely to be explained by inherent differences in vegetation. Because C3 plants were the dominant functional group, we adjusted average daily flux in each section by dividing the flux by the average percentage C3 cover. Adjusted fluxes were better correlated with CO2 concentration, although scatter remained. Our results indicate that after accounting for vegetation differences, CO2 flux increased linearly with CO2 concentration. This trend was more evident at subambient than superambient CO2 concentrations.  相似文献   

2.
Herein, this study successfully fabricates porous g‐C3N4‐based nanocomposites by decorating sheet‐like nanostructured MnOx and subsequently coupling Au‐modified nanocrystalline TiO2. It is clearly demonstrated that the as‐prepared amount‐optimized nanocomposite exhibits exceptional visible‐light photocatalytic activities for CO2 conversion to CH4 and for H2 evolution, respectively by ≈28‐time (140 µmol g?1 h?1) and ≈31‐time (313 µmol g?1 h?1) enhancement compared to the widely accepted outstanding g‐C3N4 prepared with urea as the raw material, along with the calculated quantum efficiencies of ≈4.92% and 2.78% at 420 nm wavelength. It is confirmed mainly based on the steady‐state surface photovoltage spectra, transient‐state surface photovoltage responses, fluorescence spectra related to the produced ?OH amount, and electrochemical reduction curves that the exceptional photoactivities are comprehensively attributed to the large surface area (85.5 m2 g?1) due to the porous structure, to the greatly enhanced charge separation and to the introduced catalytic functions to the carrier‐related redox reactions by decorating MnOx and coupling Au‐TiO2, respectively, to modulate holes and electrons. Moreover, it is suggested mainly based on the photocatalytic experiments of CO2 reduction with isotope 13CO2 and D2O that the produced ?CO2 and ?H as active radicals would be dominant to initiate the conversion of CO2 to CH4.  相似文献   

3.
To alleviate photoinduced charge recombination in semiconducting nanomaterials represents an important endeavor toward high‐efficiency photocatalysis. Here a judicious integration of piezoelectric and photocatalytic properties of organolead halide perovskite CH3NH3PbI3 (MAPbI3) to enable a piezophotocatalytic activity under simultaneous ultrasonication and visible light illumination for markedly enhanced photocatalytic hydrogen generation of MAPbI3 is reported. The conduction band minimum of MAPbI3 is higher than hydrogen generation potential (0.046 V vs normal hydrogen electrode), thereby rendering efficient hydrogen evolution. In addition, the noncentrosymmetric crystal structure of MAPbI3 enables its piezoelectric properties. Thus, MAPbI3 readily responds to external mechanical force, creating a built‐in electric field for collective piezophotocatalysis as a result of effective separation of photogenerated charge carriers. The experimental results show that MAPbI3 powders exhibit superior piezophotocatalytic hydrogen generation rate (23.30 µmol h?1) in hydroiodic acid (HI) solution upon concurrent light and mechanical stimulations, much higher than that of piezocatalytic (i.e., 2.21 µmol h?1) and photocatalytic (i.e., 3.42 µmol h?1) hydrogen evolution rate as well as their sum (i.e., 5.63 µmol h?1). The piezophotocatalytic strategy provides a new way to control the recombination of photoinduced charge carriers by cooperatively capitalizing on piezocatalysis and photocatalysis of organolead halide perovskites to yield highly efficient piezophotocatalysis.  相似文献   

4.
Leaf‐level measurements have shown that mesophyll conductance (gm) can vary rapidly in response to CO2 and other environmental factors, but similar studies at the canopy‐scale are missing. Here, we report the effect of short‐term variation of CO2 concentration on canopy‐scale gm and other CO2 exchange parameters of sunflower (Helianthus annuus L.) stands in the presence and absence of abscisic acid (ABA) in their nutrient solution. gm was estimated from gas exchange and on‐line carbon isotope discrimination (Δobs) in a 13CO2/12CO2 gas exchange mesocosm. The isotopic contribution of (photo)respiration to stand‐scale Δobs was determined with the experimental approach of Tcherkez et al. Without ABA, short‐term exposures to different CO2 concentrations (Ca 100 to 900 µmol mol?1) had little effect on canopy‐scale gm. But, addition of ABA strongly altered the CO2‐response: gm was high (approx. 0.5 mol CO2 m?2 s?1) at Ca < 200 µmol mol?1 and decreased to <0.1 mol CO2 m?2 s?1 at Ca >400 µmol mol?1. In the absence of ABA, the contribution of (photo)respiration to stand‐scale Δobs was high at low Ca (7.2‰) and decreased to <2‰ at Ca > 400 µmol mol?1. Treatment with ABA halved this effect at all Ca.  相似文献   

5.
It is important to quantify and understand the consequences of elevated temperature and carbon dioxide (CO2) on reproductive processes and yield to develop suitable agronomic or genetic management for future climates. The objectives of this research work were (a) to quantify the effects of elevated temperature and CO2 on photosynthesis, pollen production, pollen viability, seed‐set, seed number, seeds per pod, seed size, seed yield and dry matter production of kidney bean and (b) to determine if deleterious effects of high temperature on reproductive processes and yield could be compensated by enhanced photosynthesis at elevated CO2 levels. Red kidney bean cv. Montcalm was grown in controlled environments at day/night temperatures ranging from 28/18 to 40/30 °C under ambient (350 µmol mol?1) or elevated (700 µmol mol?1) CO2 levels. There were strong negative relations between temperature over a range of 28/18–40/30 °C and seed‐set (slope, ? 6.5% °C?1) and seed number per pod (? 0.34 °C?1) under both ambient and elevated CO2 levels. Exposure to temperature > 28/18 °C also reduced photosynthesis (? 0.3 and ? 0.9 µmol m?2 s?1 °C?1), seed number (? 2.3 and ? 3.3 °C?1) and seed yield (? 1.1 and ? 1.5 g plant?1 °C?1), at both the CO2 levels (ambient and elevated, respectively). Reduced seed‐set and seed number at high temperatures was primarily owing to decreased pollen production and pollen viability. Elevated CO2 did not affect seed size but temperature > 31/21 °C linearly reduced seed size by 0.07 g °C?1. Elevated CO2 increased photosynthesis and seed yield by approximately 50 and 24%, respectively. There was no beneficial interaction of CO2 and temperature, and CO2 enrichment did not offset the negative effects of high temperatures on reproductive processes and yield. In conclusion, even with beneficial effects of CO2 enrichment, yield losses owing to high temperature (> 34/24 °C) are likely to occur, particularly if high temperatures coincide with sensitive stages of reproductive development.  相似文献   

6.
The survivorship of dipterocarp seedlings in the deeply shaded understorey of South‐east Asian rain forests is limited by their ability to maintain a positive carbon balance. Photosynthesis during sunflecks is an important component of carbon gain. To investigate the effect of elevated CO2 upon photosynthesis and growth under sunflecks, seedlings of Shorealeprosula were grown in controlled environment conditions at ambient or elevated CO2. Equal total daily photon flux density (PFD) (~7·7 mol m?2 d?1) was supplied as either uniform irradiance (~170 µmol m?2 s?1) or shade/fleck sequences (~30 µmol m?2 s?1/~525 µmol m?2 s?1). Photosynthesis and growth were enhanced by elevated CO2 treatments but lower under flecked irradiance treatments. Acclimation of photosynthetic capacity occurred in response to elevated CO2 but not flecked irradiance. Importantly, the relative enhancement effects of elevated CO2 were greater under sunflecks (growth 60%, carbon gain 89%) compared with uniform irradiance (growth 25%, carbon gain 59%). This was driven by two factors: (1) greater efficiency of dynamic photosynthesis (photosynthetic induction gain and loss, post‐irradiance gas exchange); and (2) photosynthetic enhancement being greatest at very low PFD. This allowed improved carbon gain during both clusters of lightflecks (73%) and intervening periods of deep shade (99%). The relatively greater enhancement of growth and photosynthesis at elevated CO2 under sunflecks has important potential consequences for seedling regeneration processes and hence forest structure and composition.  相似文献   

7.
The effects of fire on soil‐surface carbon dioxide (CO2) efflux, FS, and microbial biomass carbon, Cmic, were studied in a wildland setting by examining 13‐year‐old postfire stands of lodgepole pine differing in tree density (< 500 to > 500 000 trees ha?1) in Yellowstone National Park (YNP). In addition, young stands were compared to mature lodgepole pine stands (~110‐year‐old) in order to estimate ecosystem recovery 13 years after a stand replacing fire. Growing season FS increased with tree density in young stands (1.0 µmol CO2 m?2 s?1 in low‐density stands, 1.8 µmol CO2 m?2 s?1 in moderate‐density stands and 2.1 µmol CO2 m?2 s?1 in high‐density stands) and with stand age (2.7 µmol CO2 m?2 s?1 in mature stands). Microbial biomass carbon in young stands did not differ with tree density and ranged from 0.2 to 0.5 mg C g?1 dry soil over the growing season; Cmic was significantly greater in mature stands (0.5–0.8 mg C g?1 dry soil). Soil‐surface CO2 efflux in young stands was correlated with biotic variables (above‐ground, below‐ground and microbial biomass), but not with abiotic variables (litter and mineral soil C and N content, bulk density and soil texture). Microbial biomass carbon was correlated with below‐ground plant biomass and not with soil carbon and nitrogen, indicating that plant activity controls not only root respiration, but Cmic pools and overall FS rates as well. These findings support recent studies that have demonstrated the prevailing importance of plants in controlling rates of FS and suggest that decomposition of older, recalcitrant soil C pools in this ecosystem is relatively unimportant 13 years after a stand replacing fire. Our results also indicate that realistic predictions and modeling of terrestrial C cycling must account for the variability in tree density and stand age that exists across the landscape as a result of natural disturbances.  相似文献   

8.
Strong interest exists in the development of organic–inorganic lead halide perovskite photovoltaics and of photoelectrochemical (PEC) tandem absorber systems for solar fuel production. However, their scalability and durability have long been limiting factors. In this work, it is revealed how both fields can be seamlessly merged together, to obtain scalable, bias‐free solar water splitting tandem devices. For this purpose, state‐of‐the‐art cesium formamidinium methylammonium (CsFAMA) triple cation mixed halide perovskite photovoltaic cells with a nickel oxide (NiOx) hole transport layer are employed to produce Field's metal‐epoxy encapsulated photocathodes. Their stability (up to 7 h), photocurrent density (–12.1 ± 0.3 mA cm?2 at 0 V versus reversible hydrogen electrode, RHE), and reproducibility enable a matching combination with robust BiVO4 photoanodes, resulting in 0.25 cm2 PEC tandems with an excellent stability of up to 20 h and a bias‐free solar‐to‐hydrogen efficiency of 0.35 ± 0.14%. The high reliability of the fabrication procedures allows scaling of the devices up to 10 cm2, with a slight decrease in bias‐free photocurrent density from 0.39 ± 0.15 to 0.23 ± 0.10 mA cm?2 due to an increasing series resistance. To characterize these devices, a versatile 3D‐printed PEC cell is also developed.  相似文献   

9.
The present work investigated the inorganic carbon (Ci) uptake, fluorescence quenching and photo‐inhibition of the edible cyanobacterium Ge‐Xian‐Mi (Nostoc) to obtain an insight into the role of CO2 concentrating mechanism (CCM) operation in alleviating photo‐inhibition. Ge‐Xian‐Mi used HCO3 in addition to CO2 for its photosynthesis and oxygen evolution was greater than the theoretical rates of CO2 production derived from uncatalysed dehydration of HCO3. Multiple transporters for CO2 and HCO3 operated in air‐grown Ge‐Xian‐Mi. Na+‐dependent HCO3 transport was the primary mode of active Ci uptake and contributed 53–62% of net photosynthetic activity at 250 µmol L?1 KHCO3 and pH 8.0. However, the CO2‐uptake systems and Na+‐independent HCO3 transport played minor roles in Ge‐Xian‐Mi and supported, respectively, 39 and 8% of net photosynthetic activity. The steady‐state fluorescence decreased and the photochemical quenching increased in response to the transport‐mediated accumulation of intracellular Ci. Inorganic carbon transport was a major factor in facilitating quenching during the initial stage and the initial rate of fluorescence quenching in the presence of iodoacetamide, an inhibitor of CO2 fixation, was 88% of control. Both the initial rate and extent of fluorescence quenching increased with increasing external dissolved inorganic carbon (DIC) and saturated at higher than 200 µmol L?1 HCO3. The operation of the CCM in Ge‐Xian‐Mi served as a means of diminishing photodynamic damage by dissipating excess light energy and higher external DIC in the range of 100–10000 µmol L?1 KHCO3 was associated with more severe photo‐inhibition under strong irradiance.  相似文献   

10.
The effects of salinity, light intensity and sediment on Gracilaria tenuistipitata C.F. Chang & B.M. Xia on growth, pigments, agar production, and net photosynthesis rate were examined in the laboratory under varying conditions of salinity (0, 25 and 33 psu), light intensity (150, 400, 700 and 1000 µmol photons m?2 s?1) and sediment (0, 0.67 and 2.28 mg L?1). These conditions simulated field conditions, to gain some understanding of the best conditions for cultivation of G. tenuistipitata. The highest growth rate was at 25 psu, 700 µmol photons m?2 s?1 with no sediments, that provided a 6.7% increase in weight gain. The highest agar production (24.8 ± 3.0 %DW) was at 25 psu, 150–400 µmol photons m?2 s?1 and no sediment. The highest pigment contents were phycoerythrin (0.8 ± 0.5 mg g?1FW) and phycocyanin (0.34 ± 0.05 mg g?1 FW) produced in low light conditions, at 150 µmol photons m?2 s?1. The highest photosynthesis rate was 161.3 ± 32.7 mg O2 g?1 DW h?1 in 25 psu, 400 µmol photons m?2 s?1 without sediment in the short period of cultivation, (3 days) and 60.3 ± 6.7 mg O2 g?1 DW h?1 in 25 psu, 700 µmol photons m?2 s?1 without sediment in the long period of cultivation (20 days). The results indicated that salinity was the most crucial factor affecting G. tenuistipitata growth and production. This would help to promote the cultivation of Gracilaria cultivation back into the lagoon using these now determined baseline conditions. Extrapolation of the results from the laboratory study to field conditions indicated that it was possible to obtain two crops of Gracilaria a year in the lagoon, with good yields of agar, from mid‐January to the end of April (dry season), and from mid‐July to the end of September (first rainy season) when provided sediment was restricted.  相似文献   

11.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   

12.
To determine the effects of elevated CO2 concentration ([CO2]) on the temperature‐dependent photosynthetic properties, we measured gas exchange and chlorophyll fluorescence at various leaf temperatures (15, 20, 25, 30, 35 and 40°C) in 1‐year‐old seedlings of the Japanese white birch (Betula platyphylla var. japonica), grown in a phytotron under natural daylight at two [CO2] levels (ambient: 400 µmol mol?1 and elevated: 800 µmol mol?1) and limited N availability (90 mg N plant?1). Plants grown under elevated [CO2] exhibited photosynthetic downregulation, indicated by a decrease in the carboxylation capacity of Rubisco. At temperatures above 30°C, the net photosynthetic rates of elevated‐CO2‐grown plants exceeded those grown under ambient [CO2] when compared at their growth [CO2]. Electron transport rates were significantly lower in elevated‐CO2‐grown plants than ambient‐CO2‐grown ones at temperatures below 25°C. However, no significant difference was observed in the fraction of excess light energy [(1 ? qP)× Fv′/Fm′] between CO2 treatments across the temperature range. The quantum yield of regulated non‐photochemical energy loss was significantly higher in elevated‐CO2‐grown plants than ambient, when compared at their respective growth [CO2] below 25°C. These results suggest that elevated‐CO2‐induced downregulation might not exacerbate the temperature‐dependent susceptibility to photoinhibition, because reduced energy consumption by electron transport was compensated for by increased thermal energy dissipation at low temperatures.  相似文献   

13.
Acclimation of plant photosynthesis to light irradiance (photoacclimation) involves adjustments in levels of pigments and proteins and larger scale changes in leaf morphology. To investigate the impact of rising atmospheric CO2 on crop physiology, we hypothesize that elevated CO2 interacts with photoacclimation in rice (Oryza sativa). Rice was grown under high light (HL: 700 µmol m?2 s?1), low light (LL: 200 µmol m?2 s?1), ambient CO2 (400 µl l?1) and elevated CO2 (1000 µl l?1). Leaf six was measured throughout. Obscuring meristem tissue during development did not alter leaf thickness indicating that mature leaves are responsible for sensing light during photoacclimation. Elevated CO2 raised growth chamber photosynthesis and increased tiller formation at both light levels, while it increased leaf length under LL but not under HL. Elevated CO2 always resulted in increased leaf growth rate and tiller production. Changes in leaf thickness, leaf area, Rubisco content, stem and leaf starch, sucrose and fructose content were all dominated by irradiance and unaffected by CO2. However, stomata responded differently; they were significantly smaller in LL grown plants compared to HL but this effect was significantly suppressed under elevated CO2. Stomatal density was lower under LL, but this required elevated CO2 and the magnitude was adaxial or abaxial surface‐dependent. We conclude that photoacclimation in rice involves a systemic signal. Furthermore, extra carbohydrate produced under elevated CO2 is utilized in enhancing leaf and tiller growth and does not enhance or inhibit any feature of photoacclimation with the exception of stomatal morphology.  相似文献   

14.
The Sabatier reaction, i.e., the hydrogenation of CO2 to methane (CH4) using hydrogen (H2), constitutes a potentially scalable method to store energy in a product with a high energy density. However, up to today, this reaction has been mainly thermally driven and conducted at high temperatures (typically 400–600 °C). Using light as a renewable energy source will allow for a more sustainable process by lowering the reaction temperature. Here, it is demonstrated that Ni nanoparticles support on graphitic carbon nitride (g‐CN) are a highly efficient and stable photocatalyst for the gas‐phase CO2 methanation at low temperature (150 °C). Detailed mechanistic studies reveal a very low activation energy for the reaction and high activity under visible light, leading to a remarkable and continuous CH4 production of 28 µmol g?1 h?1 of CH4 for 24 h.  相似文献   

15.
A non‐vented non‐steady state flow‐through chamber and a non‐vented non‐steady state non‐flow‐through chamber technique were used to measure CO2 efflux of a young Scots pine forest on a fertile till soil in southern Finland. Soil temperature, soil moisture and soil CO2 concentration were measured concurrently with CO2 efflux for two and a half successive years. The CO2 efflux showed a seasonal pattern, effluxes ranging from low 0.0–0.1 g CO2 m ? 2 h ? 1 in winter to peak values of 2.3 g CO2 m ? 2 h ? 1 occurring in late June and in July. The daily average effluxes in July measured by flow through chambers were 1.23 and 0.98 g CO2 m ? 2 h ? 1 in 1998 and 1999, respectively. The annual accumulated CO2 efflux was 3117 and 3326 g CO2 m ? 2 in 1998 and 1999, respectively. The spatial variation in CO2 efflux was high (CV 0.18–0.45) and increased with increasing efflux. Soil air CO2 concentration showed similar seasonal pattern the peak concentrations occurring in July–August. The CO2 concentrations ranged from 580 to 780 µ mol mol ? 1 in the humus layer to 13 620–14 470 µ mol mol ? 1 in the C‐horizon. In winter the soil air CO2 concentrations were lower, especially in deeper soil layers. Drought decreased CO2 efflux and soil air CO2 concentration. The in situ comparison on forest soil between the chamber methods showed the non‐flow‐through chamber to give ~~50% lower efflux values than that of the flow‐through chamber. When calibrated against known CO2 efflux ranging from 0.4 to 0.8 g CO2 m ? 2 h ? 1 generated with a diffusion box method developed by Widén and Lindroth [Acta Universitatis Agriculturae Suecia Silvestria, 2001], the flow‐through chamber gave equal effluxes at the lower end of the calibration range, but overestimated high effluxes by 20%. Non‐flow‐through chamber underestimated the CO2 efflux by 30%.  相似文献   

16.
Soil‐surface CO2 efflux and its spatial and temporal variations were examined in an 8‐y‐old ponderosa pine plantation in the Sierra Nevada Mountains in California from June 1998 to August 1999. Continuous measurements of soil CO2 efflux, soil temperatures and moisture were conducted on two 20 × 20 m sampling plots. Microbial biomass, fine root biomass, and the physical and chemical properties of the soil were also measured at each of the 18 sampling locations on the plots. It was found that the mean soil CO2 efflux in the plantation was 4.43 µmol m?2 s?1 in the growing season and 3.12 µmol m?2 s?1 in the nongrowing season. These values are in the upper part of the range of published soil‐surface CO2 efflux data. The annual maximum and minimum CO2 efflux were 5.87 and 1.67 µmol m?2 s?1, respectively, with the maximum occurring between the end of May and early June and the minimum in December. The diurnal fluctuation of CO2 efflux was relatively small (< 20%) with the minimum appearing around 09.00 hours and the maximum around 14.00 hours. Using daytime measurements of soil CO2 efflux tends to overestimate the daily mean soil CO2 efflux by 4–6%. The measurements taken between 09.00 and 11.00 hours (local time) seem to better represent the daily mean with a reduced sampling error of 0.9–1.5%. The spatial variation of soil CO2 efflux among the 18 sampling points was high, with a coefficient of variation of approximately 30%. Most (84%) of the spatial variation was explained by fine root biomass, microbial biomass, and soil physical and chemical properties. Although soil temperature and moisture explained most of the temporal variations (76–95%) of soil CO2 efflux, the two variables together explained less than 34% of the spatial variation. Microbial biomass, fine root biomass, soil nitrogen content, organic matter content, and magnesium content were significantly and positively correlated with soil CO2 efflux, whereas bulk density and pH value were negatively correlated with CO2 efflux. The relationship between soil CO2 efflux and soil temperature was significantly controlled by soil moisture with a Q10 value of 1.4 when soil moisture was <14% and 1.8 when soil moisture was >14%. Understanding the spatial and temporal variations is essential to accurately assessment of carbon budget at whole ecosystem and landscape scales. Thus, this study bears important implications for the study of large‐scale ecosystem dynamics, particularly in response to climatic variations and management regimes.  相似文献   

17.
Efficient and selective earth‐abundant catalysts are highly desirable to drive the electrochemical conversion of CO2 into value‐added chemicals. In this work, a low‐cost Sn modified N‐doped carbon nanofiber hybrid catalyst is developed for switchable CO2 electroreduction in aqueous medium via a straightforward electrospinning technique coupled with a pyrolysis process. The electrocatalytic performance can be tuned by the structure of Sn species on the N‐doped carbon nanofibers. Sn nanoparticles drive efficient formate formation with a high current density of 11 mA cm?2 and a faradaic efficiency of 62% at a moderate overpotential of 690 mV. Atomically dispersed Sn species promote conversion of CO2 to CO with a high faradaic efficiency of 91% at a low overpotential of 490 mV. The interaction between Sn species and pyridinic‐N may play an important role in tuning the catalytic activity and selectivity of these two materials.  相似文献   

18.
The exchange of carbon dioxide (CO2) between the atmosphere and a forest after disturbance by wind throw in the western Russian taiga was investigated between July and October 1998 using the eddy covariance technique. The research area was a regenerating forest (400 m × 1000 m), in which all trees of the preceding generation were uplifted during a storm in 1996. All deadwood had remained on site after the storm and had not been extracted for commercial purposes. Because of the heterogeneity of the terrain, several micrometeorological quality tests were applied. In addition to the eddy covariance measurements, carbon pools of decaying wood in a chronosequence of three different wind throw areas were analysed and the decay rate of coarse woody debris was derived. During daytime, the average CO2 uptake flux was ?3 µmol m?2s?1, whereas during night‐time characterised by a well‐mixed atmosphere the rates of release were typically about 6 µmol m?2s?1. Suppression of turbulent fluxes was only observed under conditions with very low friction velocity (u* ≤ 0.08 ms?1). On average, 164 mmol CO2 m?2d?1 was released from the wind throw to the atmosphere, giving a total of 14.9 mol CO2 m?2 (180 g CO2 m?2) released during the 3‐month study period. The chronosequence of dead woody debris on three different wind throw areas suggested exponential decay with a decay coefficient of ?0.04 yr?1. From the magnitude of the carbon pools and the decay rate, it is estimated that the decomposition of coarse woody debris accounted for about a third of the total ecosystem respiration at the measurement site. Hence, coarse woody debris had a long‐term influence on the net ecosystem exchange of this wind throw area. From the analysis performed in this work, a conclusion is drawn that it is necessary to include into flux networks the ecosystems that are subject to natural disturbances and that have been widely omitted into considerations of the global carbon budget. The half‐life time of about 17 years for deadwood in the wind throw suggests a fairly long storage of carbon in the ecosystem, and indicates a very different long‐term carbon budget for naturally disturbed vs. commercially managed forests.  相似文献   

19.
Insects use dormancy to survive adverse conditions. Brown locust Locustana pardalina (Walk.) eggs offer a convenient model to study dormancy (diapause and quiescence), which contributes to their survival under arid conditions. The metabolic rates of developing nondiapause, diapause and quiescent eggs are compared in the present study using closed‐system respirometry. The embryo becomes committed to continue development and hatch or to enter diapause 6 days after the eggs are placed on moist soil. The metabolic rate of nondiapause eggs increases exponentially until hatching, whereas that of diapause eggs is low and stable. The metabolic rate of diapause laboratory eggs (1.9 ± 0.6 µL CO2 mg?1 h?1) is significantly higher than that of field eggs (0.5 ± 0.3 µL CO2 mg?1 h?1), although the ranges of metabolic rate overlap and the embryos are all in late anatrepsis. The metabolic rate of quiescent eggs is similar to that of diapause eggs but decreases with time. Low metabolic rates during arrested development allow eggs to persist over long periods before hatching.  相似文献   

20.
The increase in the ambient concentration of CO2 and other greenhouse gases is producing climate events that can compromise crop survival. However, high CO2 concentrations are sometimes able to mitigate certain stresses such as salinity or drought. In this experiment, the effects of waterlogging and CO2 are studied in combination to elucidate the eventual response in sweet cherry trees. For this purpose, four sweet cherry cultivars (‘Burlat’, ‘Cashmere’, ‘Lapins and ‘New Star’) were grafted on a typically hypoxia‐tolerant rootstock (Mariana 2624) and submitted to waterlogging for 7 days at either ambient CO2 concentration (400 µmol mol?1) or at elevated CO2 (800 µmol mol?1). Waterlogging affected plants drastically, by decreasing photosynthesis, stomatal conductance, transpiration, chlorophyll fluorescence and growth. It also brought about the accumulation of proline, chloride and sulfate. Nonetheless, raising the CO2 supply not only mitigated all these effects but also induced the accumulation of soluble sugars and starch in the leaf. Therefore, sweet cherry plants submitted to waterlogging were able to overcome this stress when grown in a CO2‐enriched environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号