首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the utilization efficiency of precious metals, metal‐supported materials provide a direction for fabricating highly active and stable heterogeneous catalysts. Herein, carbon cloth (CC)‐supported Earth‐abundant CoS2 nanosheet arrays (CoS2/CC) are presented as ideal substrates for ultrafine Pt deposition (Pt‐CoS2/CC) to achieve remarkable performance toward the hydrogen and oxygen evolution reactions (HER/OER) in alkaline solutions. Notably, the Pt‐CoS2/CC hybrid delivers an overpotential of 24 mV at 10 mA cm?2 and a mass activity of 3.89 A Ptmg?1, which is 4.7 times higher than that of commercial Pt/C, at an overpotential of 130 mV for catalyzing the HER. An alkali‐electrolyzer using Pt‐CoS2/CC as a bifunctional electrode enables a water‐splitting current density of 10 mA cm?2 at a low voltage of 1.55 V and can sustain for more than 20 h, which is superior to that of the state‐of‐the‐art Pt/C+RuO2 catalyst. Further experimental and theoretical simulation studies demonstrate that strong electronic interaction between Pt and CoS2 synergistically optimize hydrogen adsorption/desorption behaviors and facilitate the in situ generation of OER active species, enhancing the overall water‐splitting performance. This work highlights the regulation of interfacial and electronic synergy in pursuit of highly efficient and durable supported catalysts for hydrogen and oxygen electrocatalytic applications.  相似文献   

2.
Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one‐step hydrothermal method is reported. The synergistic effects between the layered MoS2 nanosheets and N‐doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS2/N‐RGO‐180 exhibits the excellent catalytic activity with a low onset potential of ?5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec?1, a high exchange current density of 7.4 × 10?4 A cm?2, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS2/N‐RGO‐180 nanocomposite is superior to the most reported MoS2‐based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low‐cost MoS2‐based electrocatalysts with the extraordinary HER performance is presented.  相似文献   

3.
Nonprecious metal catalysts (NPMCs) Fe?N?C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe?N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1?O2?Fe1?N4. The modulated Fe?N?C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1?O2?Fe1?N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1?O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

4.
Developing efficient, durable, and earth‐abundant electrocatalysts for both hydrogen and oxygen evolution reactions is important for realizing large‐scale water splitting. The authors report that FeB2 nanoparticles, prepared by a facile chemical reduction of Fe2+ using LiBH4 in an organic solvent, are a superb bifunctional electrocatalyst for overall water splitting. The FeB2 electrode delivers a current density of 10 mA cm?2 at overpotentials of 61 mV for hydrogen evolution reaction (HER) and 296 mV for oxygen evolution reaction (OER) in alkaline electrolyte with Tafel slopes of 87.5 and 52.4 mV dec?1, respectively. The electrode can sustain the HER at an overpotential of 100 mV for 24 h and OER for 1000 cyclic voltammetry cycles with negligible degradation. Density function theory calculations demonstrate that the boron‐rich surface possesses appropriate binding energy for chemisorption and desorption of hydrogen‐containing intermediates, thus favoring the HER process. The excellent OER activity of FeB2 is ascribed to the formation of a FeOOH/FeB2 heterojunction during water oxidation. An alkaline electrolyzer is constructed using two identical FeB2‐NF electrodes as both anode and cathode, which can achieve a current density of 10 mA cm?2 at 1.57 V for overall water splitting with a faradaic efficiency of nearly 100%, rivalling the integrated state‐of‐the‐art Pt/C and RuO2/C.  相似文献   

5.
The development of efficient hydrogen evolution reaction electrocatalysts is critical to the realization of clean hydrogen fuel production, while the sluggish kinetics of the Volmer‐step substantially restricts the catalyst performances in alkali electrolyzers, even for noble metal catalysts such as Pt. Here, a Pt‐decorated Ni3N nanosheet electrocatalyst is developed to achieve a top performance of hydrogen evolution in alkaline conditions. Possessing a high metallic conductivity and an atomic‐thin semiconducting hydroxide surface, the Ni3N nanosheets serve as not only an efficient electron pathway without the hindrance of Schottky barriers, but also provide abundant active sites for water dissociation and generation of hydrogen intermediates, which are further adsorbed on the Pt surface to recombine to H2. The Pt‐decorated Ni3N nanosheet catalyst exhibits a hydrogen evolution current density of 200 mA cm?2 at an overpotential of 160 mV versus reversible hydrogen electrode, a Tafel slope of ≈36.5 mV dec?1, and excellent stability of 82.5% current retention after 24 h of operation. Moreover, a hybrid cell consisting of a Pt‐decorated Ni3N nanosheet cathode and a Li‐metal anode is assembled to achieve simultaneous hydrogen evolution and electricity generation, exhibiting >60 h long‐term hydrogen evolution reaction stability and an output voltage ranging from 1.3 to 2.2 V.  相似文献   

6.
Electrocatalysts that are stable and highly active at low overpotential (η) under mild conditions as well as cost‐effective and scalable are eagerly desired for potential use in photo‐ and electro‐driven hydrogen evolution devices. Here the fabrication and characterization of a super‐active and robust Cu‐CuxO‐Pt nanoparticulate electrocatalyst is reported, which displays a small Tafel slope (44 mV dec?1) and a large exchange current density (1.601 mA cm?2) in neutral buffer solution. The catalytic current density of this catalyst film reaches 500 mA cm?2 at η = ?390 ± 12 mV and 20 mA cm?2 at η = ?45 ± 3 mV, which are significantly higher than the values displayed by Pt foil and Pt/C electrodes in neutral buffer solution and even comparable with the activity of Pt electrode in 0.5 m H2SO4 solution.  相似文献   

7.
Developing low‐cost, highly efficient, and robust earth‐abundant electrocatalysts for hydrogen evolution reaction (HER) is critical for the scalable production of clean and sustainable hydrogen fuel through electrochemical water splitting. This study presents a facile approach for the synthesis of nanostructured pyrite‐phase transition metal dichalcogenides as highly active, earth‐abundant catalysts in electrochemical hydrogen production. Iron disulfide (FeS2) nanoparticles are in situ loaded and stabilized on reduced graphene oxide (RGO) through a current‐induced high‐temperature rapid thermal shock (≈12 ms) of crushed iron pyrite powder. FeS2 nanoparticles embedded in between RGO exhibit remarkably improved electrocatalytic performance for HER, achieving 10 mA cm?2 current at an overpotential as low as 139 mV versus a reversible hydrogen electrode with outstanding long‐term stability under acidic conditions. The presented strategy for the design and synthesis of highly active earth‐abundant nanomaterial catalysts paves the way for low‐cost and large‐scale electrochemical energy applications.  相似文献   

8.
Nonprecious metal catalysts (NPMCs) Fe? N? C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe? N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1? O2? Fe1? N4. The modulated Fe? N? C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1? O2? Fe1? N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1? O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

9.
MoS2 has drawn great attention as a promising Pt‐substituting catalyst for the hydrogen evolution reaction (HER). This work utilizes H2 as the structure directing agent (SDA) to in situ synthesize a range of Co‐MoS2n (n = 0, 0.5, 1.0, 1.4, 2.0) with expanded interlayer spacings (d = 9.2 – 11.1 Å), which significantly boost their HER activities. The Co‐MoS2‐1.4 with an interlayer spacing of 10.3 Å presents an extremely low overpotential of 56 mV (at 10 mA cm?2) and a Tafel slope of 32 mV dec?1, which is superior than most reported MoS2‐based catalysts. Density function theory calculations are used to gain insights that i) the H2 can be dissociatively adsorbed on MoS2 and greatly affect the related surface free energy by regulating the interlayer spacing; ii) the expanded interlayer spacing can significantly decrease the absolute value of ΔGH, thereby leading to greatly promoted HER activity. Additionally, the large amounts of 1T phase (73.9–79.2%) and Co‐Mo‐S active sites (40.9–91.3%) also contribute to the enhanced HER activity of the synthesized samples. Overall, a simple new strategy for in situ synthesis of Co‐MoS2 with an expanded interlayer spacing is proposed, which sheds light on other 2D energy material designs.  相似文献   

10.
Water splitting requires development of cost‐effective multifunctional materials that can catalyze both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) efficiently. Currently, the OER relies on the noble‐metal catalysts; since with other catalysts, its operation environment is greatly limited in alkaline conditions. Herein, an advanced water oxidation catalyst based on metallic Co9S8 decorated with single‐atomic Mo (0.99 wt%) is synthesized (Mo‐Co9S8@C). It exhibits pronounced water oxidization activity in acid, alkali, and neutral media by showing positive onset potentials of 200, 90, and 290 mV, respectively, which manifests the best Co9S8‐based single‐atom Mo catalyst till now. Moreover, it also demonstrates excellent HER performance over a wide pH range. Consequently, the catalyst even outperforms noble metal Pt/IrO2‐based catalysts for overall water splitting (only requiring 1.68 V in acid, and 1.56 V in alkaline). Impressively, it works under a current density of 10 mA cm?2 with no obvious decay during a 24 h (0.5 m H2SO4) and 72 h (1.0 m KOH) durability experiment. Density functional theory (DFT) simulations reveal that the synergistic effects of atomically dispersed Mo with Co‐containing substrates can efficiently alter the binding energies of adsorbed intermediate species and decrease the overpotentials of the water splitting.  相似文献   

11.
The development of dual catalysts with high efficiency toward oxygen reduction and evolution reactions (ORR and OER) in acidic media is a significant challenge. Here an active and durable dual catalyst based upon cubic Pt39Ir10Pd11 nanocages with an average edge length of 12.3 nm, porous walls as thin as 1.0 nm, and well‐defined {100} facets is reported. The trimetallic nanocages perform better than all the reported dual catalysts in acidic media, with a low ORR‐OER overpotential gap of only 704 mV at a Pt‐Ir‐Pd loading of 16.8 µgPt+Ir+Pd cm?2geo. For ORR at 0.9 V, when benchmarked against the commercial Pt/C and Pt‐Pd nanocages, the trimetallic nanocages exhibit an enhanced mass activity of 0.52 A mg?1Pt+Ir+Pd (about four and two times as high as those of the Pt/C and Pt‐Pd nanocages) and much improved durability. For OER, the trimetallic nanocages show a remarkable mass activity of 0.20 A mg?1Pt+Ir at 1.53 V, which is 16.7 and 4.3 fold relative to those of the Pt/C and Pt‐Pd nanocages, respectively. These improvements can be ascribed to the highly open structure of the nanocages, and the possible electronic coupling between Ir and Pt atoms in the lattice.  相似文献   

12.
It is urgently required to develop highly efficient and stable bifunctional non‐noble metal electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for water splitting. In this study, a facile electrospinning followed by a post‐carbonization treatment to synthesize nitrogen‐doped carbon nanofibers (NCNFs) integrated with Ni and Mo2C nanoparticles (Ni/Mo2C‐NCNFs) as water splitting electrocatalysts is developed. Owing to the strong hydrogen binding energy on Mo2C and high electrical conductivity of Ni, synergetic effect between Ni and Mo2C nanoparticles significantly promote both HER and OER activities. The optimized hybrid (Ni/Mo2C(1:2)‐NCNFs) delivers low overpotentials of 143 mV for HER and 288 mV for OER at a current density of 10 mA cm?2. An alkaline electrolyzer with Ni/Mo2C(1:2)‐NCNFs as catalysts for both anode and cathode exhibits a current density of 10 mA cm?2 at a voltage of 1.64 V, which is only 0.07 V larger than the benchmark of Pt/C‐RuO2 electrodes. In addition, an outstanding long‐term durability during 100 h testing without obvious degradation is achieved, which is superior to most of the noble‐metal‐free electrocatalysts reported to date. This work provides a simple and effective approach for the preparation of low‐cost and high‐performance bifunctional electrocatalysts for efficient overall water splitting.  相似文献   

13.
The search for Pt‐free electrocatalysts exceeding pH‐universal hydrogen evolution reaction (HER) activities when compared to the state‐of‐the‐art commercial Pt/C is highly desirable for the development of renewable energy conversion systems but still remains a huge challenge. Here a colloidal synthesis of monodisperse Rh2P nanoparticles with an average size of 2.8 nm and their superior catalytic activities for pH‐universal HER are reported. Significantly, the Rh2P catalyst displays remarkable HER performance with overpotentials of 14, 30, and 38 mV to achieve 10 mA cm?2 in 0.5 m H2SO4, 1.0 m KOH, and 1.0 m phosphate‐buffered saline, respectively, exceeding almost all the documented electrocatalysts, including the commercial 20 wt% Pt/C. Density functional theory calculations reveal that the introduction of P into Rh can weaken the H adsorption strength of Rh2P to nearly zero, beneficial for boosting HER performance.  相似文献   

14.
A novel hybrid of small core@shell structured CoSx@Cu2MoS4 uniformly hybridizing with a molybdenum dichalcogenide/N,S‐codoped graphene hetero‐network (CoSx@Cu2MoS4‐MoS2/NSG) is prepared by a facile route. It shows excellent performance toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) in alkaline medium. The hybrid exhibits rapid kinetics for ORR with high electron transfer number of ≈3.97 and exciting durability superior to commercial Pt/C. It also demonstrates great potential with remarkable stability for HER and OER, requiring low overpotential of 118.1 and 351.4 mV, respectively, to reach a current density of 10 mA cm?2. An electrolyzer based on CoSx@Cu2MoS4‐MoS2/NSG produces low cell voltage of 1.60 V and long‐term stability, surpassing a device of Pt/C + RuO2/C. In addition, a Zn‐air battery using cathodic CoSx@Cu2MoS4‐MoS2/NSG catalyst delivers a high cell voltage of ≈1.44 V and a power density of 40 mW cm?2 at 58 mA cm?2, better than the state‐of‐the‐art Pt/C catalyst. These achievements are due to the rational combination of highly active core@shell CoSx@Cu2MoS4 with large‐area and high‐porosity MoS2/NSG to produce unique physicochemical properties with multi‐integrated active centers and synergistic effects. The outperformances of such catalyst suggest an advanced candidate for multielectrocatalysis applications in metal‐air batteries and hydrogen production.  相似文献   

15.
A metalorganic gaseous doping approach for constructing nitrogen‐doped carbon polyhedron catalysts embedded with single Fe atoms is reported. The resulting catalysts are characterized using scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray absorption spectroscopy; for the optimal sample, calculated densities of Fe–Nx sites and active N sites reach 1.75812 × 1013 and 1.93693 × 1014 sites cm‐2, respectively. Its oxygen reduction reaction half‐wave potential (0.864 V) is 50 mV higher than that of 20 wt% Pt/C catalyst in an alkaline medium and comparable to the latter (0.78 V vs 0.84 V) in an acidic medium, along with outstanding durability. More importantly, when used as a hydrogen–oxygen polymer electrolyte membrane fuel cell (PEMFC) cathode catalyst with a catalyst loading as low as 1 mg cm‐2 (compared with a conventional loading of 4 mg cm‐2), it exhibits a current density of 1100 mA cm‐2 at 0.6 V and 637 mA cm‐2 at 0.7 V, with a power density of 775 mW cm‐2, or 0.775 kW g–1 of catalyst. In a hydrogen–air PEMFC, current density reaches 650 mA cm‐2 at 0.6 V and 350 mA cm‐2 at 0.7 V, and the maximum power density is 463 mW cm‐2, which makes it a promising candidate for cathode catalyst toward high‐performance PEMFCs.  相似文献   

16.
Exploring highly‐efficient and low‐cost electrodes for both hydrogen and oxygen evolution reaction (HER and OER) is of primary importance to economical water splitting. Herein, a series of novel and robust bifunctional boride‐based electrodes are successfully fabricated using a versatile Et2NHBH3‐involved electroless plating (EP) approach via deposition of nonprecious boride‐based catalysts on various substrates. Owing to the unique binder‐free porous nodule structure induced by the hydrogen release EP reaction, most of the nonprecious boride‐based electrodes are highly efficient for overall water splitting. As a distinctive example, the Co‐B/Ni electrode can afford 10 mA cm?2 at overpotentials of only 70 mV for HER and 140 mV for OER, and can also survive at large current density of 1000 mA cm?2 for over 20 h without performance degradation in 1.0 m KOH. Several boride‐based two‐electrode electrolyzers can achieve 10 mA cm?2 at low voltages of around 1.4 V. Moreover, the facile EP approach is economically viable for flexible and large size electrode production.  相似文献   

17.
Although the maximized dispersion of metal atoms has been realized in the single‐atom catalysts, further improving the intrinsic activity of the catalysts is of vital importance. Here, the decoration of isolated Ru atoms into an edge‐rich carbon matrix is reported for the electrocatalytic hydrogen evolution reaction. The developed catalyst displays high catalytic performance with low overpotentials of 63 and 102 mV for achieving the current densities of 10 and 50 mA cm?2, respectively. Its mass activity is about 9.6 times higher than that of the commercial Pt/C‐20% catalyst at an overpotential of 100 mV. Experimental results and density functional theory calculations suggest that the edges in the carbon matrix enhance the local electric field at the Ru site and accelerate the reaction kinetics for the hydrogen evolution. The present work may provide insights into electrocatalytic behavior and guide the design of advanced electrocatalysts.  相似文献   

18.
Molecular hydrogen can be generated renewably by water splitting with an “artificial‐leaf device”, which essentially comprises two electrocatalyst electrodes immersed in water and powered by photovoltaics. Ideally, this device should operate efficiently and be fabricated with cost‐efficient means using earth‐abundant materials. Here, a lightweight electrocatalyst electrode, comprising large surface‐area NiCo2O4 nanorods that are firmly anchored onto a carbon–paper current collector via a dense network of nitrogen‐doped carbon nanotubes is presented. This electrocatalyst electrode is bifunctional in that it can efficiently operate as both anode and cathode in the same alkaline solution, as quantified by a delivered current density of 10 mA cm?2 at an overpotential of 400 mV for each of the oxygen and hydrogen evolution reactions. By driving two such identical electrodes with a solution‐processed thin‐film perovskite photovoltaic assembly, a wired artificial‐leaf device is obtained that features a Faradaic H2 evolution efficiency of 100%, and a solar‐to‐hydrogen conversion efficiency of 6.2%. A detailed cost analysis is presented, which implies that the material‐payback time of this device is of the order of 100 days.  相似文献   

19.
Currently, it is still a significant challenge to simultaneously boost various reactions by one electrocatalyst with high activity, excellent durability, as well as low cost. Herein, hybrid trifunctional electrocatalysts are explored via a facile one‐pot strategy toward an efficient oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The catalysts are rationally designed to be composed by FeCo nanoparticles encapsuled in graphitic carbon films, Co2P nanoparticles, and N,P‐codoped carbon nanofiber networks. The FeCo nanoparticles and the synergistic effect from Co2P and FeCo nanoparticles make the dominant contributions to the ORR, OER, and HER activities, respectively. Their bifunctional activity parameter (?E) for ORR and OER is low to 0.77 V, which is much smaller than those of most nonprecious metal catalysts ever reported, and comparable with state‐of‐the‐art Pt/C and RuO2 (0.78 V). Accordingly, the as‐assembled Zn–air battery exhibits a high power density of 154 mW cm?2 with a low charge–discharge voltage gap of 0.83 V (at 10 mA cm?2) and excellent stability. The as‐constructed overall water‐splitting cell achieves a current density of 10 mA cm?2 (at 1.68 V), which is comparable to the best reported trifunctional catalysts.  相似文献   

20.
The most efficient electrocatalyst for the hydrogen evolution reaction (HER) is a Pt‐based catalyst, but its high cost and nonperfect efficiency hinder wide‐ranging industrial/technological applications. Here, an electrocatalyst of both ruthenium (Ru) single atoms (SAs) and N‐doped‐graphitic(GN)‐shell‐covered nitrided‐Ru nanoparticles (NPs) (having a Ru‐Nx shell) embedded on melamine‐derived GN matrix { 1 : [Ru(SA)+Ru(NP)@RuNx@GN]/GN}, which exhibits superior HER activity in both acidic and basic media, is presented. In 0.5 m H2SO4/1 m KOH solutions, 1 shows diminutive “negative overpotentials” (?η = |η| = 10/7 mV at 10 mA cm?2, lowest ever) and high exchange current densities (4.70/1.96 mA cm?2). The remarkable HER performance is attributed to the near‐zero free energies for hydrogen adsorption/desorption on Ru(SAs) and the increased conductivity of melamine‐derived GN sheets by the presence of nitrided‐Ru(NPs). The nitridation process forming nitrided‐Ru(NPs), which are imperfectly covered by a GN shell, allows superb long‐term operation durability. The catalyst splits water into molecular oxygen and hydrogen at 1.50/1.40 V (in 0.1 m HClO4/1 m KOH), demonstrating its potential as a ready‐to‐use, highly effective energy device for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号