首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low‐resistance contact to lightly doped n‐type crystalline silicon (c‐Si) has long been recognized as technologically challenging due to the pervasive Fermi‐level pinning effect. This has hindered the development of certain devices such as n‐type c‐Si solar cells made with partial rear contacts (PRC) directly to the lowly doped c‐Si wafer. Here, a simple and robust process is demonstrated for achieving mΩ cm2 scale contact resistivities on lightly doped n‐type c‐Si via a lithium fluoride/aluminum contact. The realization of this low‐resistance contact enables the fabrication of a first‐of‐its‐kind high‐efficiency n‐type PRC solar cell. The electron contact of this cell is made to less than 1% of the rear surface area, reducing the impact of contact recombination and optical losses, permitting a power conversion efficiency of greater than 20% in the initial proof‐of‐concept stage. The implementation of the LiFx/Al contact mitigates the need for the costly high‐temperature phosphorus diffusion, typically implemented in such a cell design to nullify the issue of Fermi level pinning at the electron contact. The timing of this demonstration is significant, given the ongoing transition from p‐type to n‐type c‐Si solar cell architectures, together with the increased adoption of advanced PRC device structures within the c‐Si photovoltaic industry.  相似文献   

2.
A high Schottky barrier (>0.65 eV) for electrons is typically found on lightly doped n‐type crystalline (c‐Si) wafers for a variety of contact metals. This behavior is commonly attributed to the Fermi‐level pinning effect and has hindered the development of n‐type c‐Si solar cells, while its p‐type counterparts have been commercialized for several decades, typically utilizing aluminium alloys in full‐area, and more recently, partial‐area rear contact configurations. Here the authors demonstrate a highly conductive and thermally stable electrode composed of a magnesium oxide/aluminium (MgOx/Al) contact, achieving moderately low resistivity Ohmic contacts on lightly doped n‐type c‐Si. The electrode, functionalized with nanoscale MgOx films, significantly enhances the performance of n‐type c‐Si solar cells to a power conversion efficiency of 20%, advancing n‐type c‐Si solar cells with full‐area dopant‐free rear contacts to a point of competitiveness with the standard p‐type architecture. The low thermal budget of the cathode formation, its dopant‐free nature, and the simplicity of the device structure enabled by the MgOx/Al contact open up new possibilities in designing and fabricating low‐cost optoelectronic devices, including solar cells, thin film transistors, or light emitting diodes.  相似文献   

3.
Recent advances in the efficiency of crystalline silicon (c‐Si) solar cells have come through the implementation of passivated contacts that simultaneously reduce recombination and resistive losses within the contact structure. In this contribution, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca). By using Ca as the overlying metal in the contact structure we are able to achieve a reduction in the contact resistivity of TiOx passivated contacts of up to two orders of magnitude compared to previously reported data on Al/TiOx contacts, allowing for the application of the Ca/TiOx contact to n‐type c‐Si solar cells with partial rear contacts. Implementing this contact structure on the cell level results in a power conversion efficiency of 21.8% where the Ca/TiOx contact comprises only ≈6% of the rear surface of the solar cell, an increase of 1.5% absolute compared to a similar device fabricated without the TiOx interlayer.  相似文献   

4.
Organic–inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency exceeding 22%. For inverted structure perovskite solar cells, the hole extraction layers play a significant role in achieving efficient and stable perovskite solar cell by modifying charge extraction, interfacial recombination losses, and band alignment. Here, cesium doped NiOx is selected as a hole extraction layer to study the impact of Cs dopant on the optoelectronic properties of NiOx and the photovoltaic performance. Cs doped NiOx films are prepared by a simple solution‐based method. Both doped and undoped NiOx films are smooth and highly transparent, while the Cs doped NiOx exhibits better electron conductivity and higher work function. Therefore, Cs doping results in a significant improvement in the performance of NiOx‐based inverted planar perovskite solar cells. The best efficiency of Cs doped NiOx devices is 19.35%, and those devices show high stability as well. The improved efficiency in devices with Cs:NiOx is attributed to a significant improvement in the hole extraction and better band alignment compared to undoped NiOx. This work reveals that Cs doped NiOx is very promising hole extraction material for high and stable inverted perovskite solar cells.  相似文献   

5.
Organic conjugated molecule/silicon (Si) heterojunction has been widely investigated to build up an asymmetrical heterocontact for efficient photovoltaics. However, it is still unclear how the organic molecular structures can affect their electronic coupling interaction with Si. Here, two widely explored electron acceptors of poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (N2200) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) are used to build up asymmetrical Si heterocontact to investigate their electronic coupling interaction. It is found that PCBM displays different electronic coupling with Si from N2200, which is ascribed to their various physical distance with Si based on a systematic and detailed density functional theory calculation. Organic layer incorporation not only suppresses the surface charge recombination velocity but also leads to an Ohmic contact between Si and Al. Therefore, a doping‐free organic/Si heterojunction photovoltaic with a power conversion efficiency of 14.9% is achieved with PCBM layer. This work discloses a key factor affecting organic/Si electronic coupling interaction, which helps build up high quality Si heterocontact for solar cells and other optoelectronic devices. Furthermore, the simplified heterocontact achieved by a low temperature, solution processed, and lithography‐free steps has a dramatic improvement on conventional diffusion doped‐silicon one at high temperature.  相似文献   

6.
A common phenomenon of organic solar cells (OSCs) incorporating metal‐oxide electron extraction layers is the requirement to expose the devices to UV light in order to improve device characteristics – known as the so‐called “light‐soaking” issue. This behaviour appears to be of general validity for various metal‐oxide layers, various organic donor/acceptor systems, and regardless if single junction devices or multi stacked cells are considered. The requirement of UV exposure of OSCs may impose severe problems if substrates with limited UV transmission, UV blocking filters or UV to VIS down‐conversion concepts are applied. In this paper, we will demonstrate that this issue can be overcome by the use of Al doped ZnO (AZO) as electron extraction interlayer. In contrast to devices based on TiOx and ZnO, the AZO devices show well‐behaved solar cell characteristics with a high fill factor (FF) and power conversion efficiency (PCE) even without the UV spectral components of the AM1.5 solar spectrum. As opposed to previous claims, our results indicate that the origin of s‐shaped characteristics of the OSCs is the metal‐oxide/organic interface. The electronic structures of the TiOx/fullerene and AZO/fullerene interfaces are studied by photoelectron spectroscopy, revealing an electron extraction barrier for the TiOx/fullerene case and facilitated electron extraction for AZO/fullerene. These results are of general relevance for organic solar cells based on various donor acceptor active systems.  相似文献   

7.
TiOx (x < 2) nanoparticles with tunable colors from white to gray to blue–gray to black are synthesized by magnesium (Mg) reduction of white P25 TiO2 nanocrystals followed by removal of excess Mg with aqueous HCl and distilled water. Increasing amounts of Mg smoothly decrease the oxygen content in TiOx which is responsible for the gradual increase in light absorption and concomitant darkening of its color from white to black with decreasing values of x. The as‐synthesized TiOx nanoparticles are spin‐coated onto the surface of a stainless steel mesh followed by surface superhydrophobization in order to test their performance as a solar water evaporator. Results from the tests show that the black TiOx efficiently generates water vapor with a solar thermal conversion efficiency as high as 50% under solar‐simulated light irradiance at an intensity of 1000 W m–2 (1 Sun). Moreover, TiOx nanoparticles have inherent advantages over other materials used for solar water desalination, such as their tunable light absorption, low‐cost, low‐toxicity, superhydrophobicity, and chemical stability.  相似文献   

8.
Minimizing carrier recombination at contact regions by using carrier‐selective contact materials, instead of heavily doping the silicon, has attracted considerable attention for high‐efficiency, low‐cost crystalline silicon (c‐Si) solar cells. A novel electron‐selective, passivating contact for c‐Si solar cells is presented. Tantalum nitride (TaN x ) thin films deposited by atomic layer deposition are demonstrated to provide excellent electron‐transporting and hole‐blocking properties to the silicon surface, due to their small conduction band offset and large valence band offset. Thin TaNx interlayers provide moderate passivation of the silicon surfaces while simultaneously allowing a low contact resistivity to n‐type silicon. A power conversion efficiency (PCE) of over 20% is demonstrated with c‐Si solar cells featuring a simple full‐area electron‐selective TaNx contact, which significantly improves the fill factor and the open circuit voltage (Voc) and hence provides the higher PCE. The work opens up the possibility of using metal nitrides, instead of metal oxides, as carrier‐selective contacts or electron transport layers for photovoltaic devices.  相似文献   

9.
Recent research on fabricating scaffold‐type perovskite solar cells on plastic substrates has reported noteworthy progress in replacing the high‐temperature processing of TiO2 scaffolds and compact layers with various low‐temperature processes. Herein, recent progress in the laboratory is reported regarding the development of electrodeposited TiOx compact layers and brookite TiO2 scaffolds, both of which can be processed under 150 °C without greatly sacrificing their photovoltaic performance. Through systematic characterization of device properties and careful optimization of the fabrication conditions, a record‐high 15.76% power conversion efficiency of a plastic TiO2 scaffold‐type perovskite solar cell is demonstrated. In addition, bending durability and preliminary stability tests on this plastic perovskite solar cell show promising results and indicate clear directions for future improvement.  相似文献   

10.
Silicon (Si)‐based dopant‐free heterojunction solar cells (SCs) featuring carrier‐selective contacts (CSCs) have attracted considerable interest due to the extreme simplifications in their device structure and manufacturing procedure. However, these SCs are limited by the unsatisfactory contact properties on both sides of the junction, and their efficiencies are not comparable with those of commercially available Si SCs. In this report, a high‐performance silicon‐oxide/magnesium (SiOx/Mg) electron‐selective contact (ESC) design is described. Combining an ultrathin SiOx and a low work function Mg layer, the novel ESC simultaneously yields low recombinative and resistive losses. In addition, deposition of Mg on SiOx relaxes the restriction on the threshold thickness of the SiOx for electron tunneling and therefore broadens the optimization space for rear‐sided passivation. Meanwhile, hole‐selective contact with boosted light harvesting and suppressed interfacial recombination is achieved by forming a fully conformal contact between the conducting poly(3,4‐ethylene dioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) and periodic Si pyramid arrays. With the double‐sided carrier‐selective contact designs, PEDOT: PSS/Si/SiOx/Mg SCs with efficiency of 15% are finally obtained via a totally dopant‐free processing. Subsequent calculations further indicate a pathway for the improvement of these contacts toward an efficiency that is competitive with conventionally diffused pn junction SCs.  相似文献   

11.
An efficient perovskite photovoltaic‐thermoelectric hybrid device is demonstrated by integrating the hole‐conductor‐free perovskite solar cell based on TiO2/ZrO2/carbon structure and the thermoelectric generator. The whole solar spectrum of AM 1.5 G is fully utilized with the ≈1.55 eV band gap perovskite (5‐AVA)x(MA)1?xPbI3 absorbing the visible light and the carbon back contact absorbing the infrared light. The added thermoelectric generator improves the device performance by converting the thermal energy into electricity via the Seebeck effect. An optimized hybrid device is obtained with a maximum point power output of 20.3% and open‐circuit voltage of 1.29 V under the irradiation of 100 mW cm?2.  相似文献   

12.
Nanometer scale interfacial layers between the metal cathode and the n‐type semiconductor play a critical role in enhancing the transport of charge carriers in and out of optoelectronic devices. Here, a range of nanoscale alkali and alkaline earth metal carbonates (i.e., potassium, rubidium, caesium, calcium, strontium, and barium) are shown to function effectively as electron heterocontacts to lightly doped n‐type crystalline silicon (c‐Si), which is particularly challenging to contact with common metals. These carbonate interlayers are shown to enhance the performance of n‐type c‐Si proof‐of‐concept solar cells up to a power conversion efficiency of ≈19%. Furthermore, these devices are thermally stable up to 350 °C and both the caesium and barium carbonates pass a standard 1000 h damp heat test, with >95% of their initial performance maintained. The temperature and humidity stable electron heterocontacts based on alkali and alkaline earth metal carbonates show a high potential for industrial feasibility and longevity for deployment in the field.  相似文献   

13.
In this work all‐inorganic perovskite CsPbIBr2 are doped with Mn to compensate their shortcomings in band structure for the application of perovskite solar cells (PSCs). The novel Mn‐doped all‐inorganic perovskites, CsPb1?xMnxI1+2xBr2?2x, are prepared in ambient atmosphere. As the concentration of Mn2+ ions increases, the bandgaps of CsPb1?xMnxI1+2xBr2?2x decrease from 1.89 to 1.75 eV. Additionally, when the concentration of Mn dopants is appropriate, this novel Mn‐doped all‐inorganic perovskite film shows better crystallinity and morphology than its undoped counterpart. These advantages alleviate the energy loss in hole transfer and facilitate the charge‐transfer in perovskites, therefore, PSCs based on these novel CsPb1?xMnxI1+2xBr2?2x perovskite films display better photovoltaic performance than the undoped CsPbIBr2 perovskite films. The reference CsPbIBr2 cell reaches a power conversion efficiency (PCE) of 6.14%, comparable with the previous reports. The CsPb1?xMnxI1+2xBr2?2x cells reach the highest PCE of 7.36% (when x = 0.005), an increase of 19.9% in PCE. Furthermore, the encapsulated CsPb0.995Mn0.005I1.01Br1.99 cells exhibit good stability in ambient atmosphere. The storage stability measurements on the encapsulated PSCs reveal that PCE is dropped by only 8% of the initial value after >300 h in ambient. Such improved efficiency and stability are achieved using low‐cost carbon electrodes (without expensive hole transport materials and Au electrodes).  相似文献   

14.
Multijunction solar cells are designed to improve the overlap with the solar spectrum and to minimize losses due to thermalization. Aside from the optimum choice of photoactive materials for the respective sub‐cells, a proper interconnect is essential. This study demonstrates a novel all‐oxide interconnect based on the interface of the high‐work‐function (WF) metal oxide MoOx and low‐WF tin oxide (SnOx). In contrast to typical p‐/n‐type tunnel junctions, both the oxides are n‐type semiconductors with a WF of 5.2 and 4.2 eV, respectively. It is demonstrated that the electronic line‐up at the interface of MoOx and SnOx comprises a large intrinsic interface dipole (≈0.8 eV), which is key to afford ideal alignment of the conduction band of MoOx and SnOx, without the requirement of an additional metal or organic dipole layer. The presented MoOx/SnOx interconnect allows for the ideal (loss‐free) addition of the open circuit voltages of the two sub‐cells.  相似文献   

15.
Recent advances in solar water splitting by using BiVO4 as a photoanode have greatly optimized charge carrier and reaction dynamics, but relatively wide bandgap and poor photostability are still bottlenecks. Here, an excellent photoanode of black BiVO4@amorphous TiO2?x to tackle both problems is reported. Its applied bias photon‐to‐current efficiency for solar water splitting is up to 2.5%, which is a new record for a single oxide photon absorber. This unique core–shell structure is fabricated by coating amorphous TiO2 on nanoporous BiVO4 with the aid of atomic layer deposition and further hydrogen plasma treatment at room temperature. The black BiVO4 with moderate oxygen vacancies reveals a bandgap reduction of ≈0.3 eV and significantly enhances solar utilization, charge transport and separation simultaneously, compared with conventional BiVO4. The amorphous layer of TiO2?x acts as both oxygen‐evolution catalyst and protection layer, which suppresses anodic photocorrosion to stabilize black BiVO4. This configuration of black BiVO4@amorphous TiO2?x may provide an effective strategy to prompt solar water splitting toward practical applications.  相似文献   

16.
As a wide‐bandgap semiconductor, titanium dioxide (TiO2) with a porous structure has proven useful in dye‐sensitized solar cells, but its application in low‐cost, high‐efficiency inorganic photovoltaic devices based on materials such as Cu(InGa)Se2 or Cu2ZnSnS4 is limited. Here, a thin film made from solution‐processed TiO2 nanocrystals is demonstrated as an alternative to intrinsic zinc oxide (i‐ZnO) as the window layer of CuInSxSe1?x solar cells. The as‐synthesized, well‐dispersed, 6 nm TiO2 nanocrystals are assembled into thin films with controllable thicknesses of 40, 80, and 160 nm. The TiO2 nanocrystal films with thicknesses of 40 and 80 nm exhibit conversion efficiencies (6.2% and 6.33%, respectively) that are comparable to that of a layer of the typical sputtered i‐ZnO (6.42%). The conversion efficiency of the devices with a TiO2 thickness of 160 nm decreases to 2.2%, owing to the large series resistance. A 9‐hour reaction time leads to aggregated nanoparticles with a much‐lower efficiency (2%) than that of the well‐dispersed TiO2 nanoparticles prepared using a 15‐hour reaction time. Under optimized conditions, the champion TiO2 nanocrystal‐film‐based device shows even higher efficiency (9.2%) than a control device employing a typical i‐ZnO film (8.6%).  相似文献   

17.
The use of polydopamine as a nitrogen containing precursor to generate catalytically active nitrogen‐doped carbon (CNx) materials on carbon nanotubes (CNTs) is reported. These N‐doped CNx/CNT materials display excellent electrocatalytic activity toward the reduction of triiodide electrolyte in dye‐sensitized solar cells (DSSCs). Further, the influence of various synthesis parameters on the catalytic performance of CNx/CNTs is investigated in detail. The best performing device fabricated with the CNx/CNTs material delivers power conversion efficiency of 7.3%, which is comparable or slightly higher than that of Pt (7.1%) counter electrode‐based DSSC. These CNx/CNTs materials show great potential to address the issues associated with the Pt electrocatalyst including the high cost and scarcity.  相似文献   

18.
A form of photoelectrode architecture suitable for inorganic semiconductor solar cells is reported. The developed architecture consists of hierarchically organized TiO2 nanostructures with several tens of nanometer‐sized particles that have a large surface area and open channels with several hundred‐nanometer‐gaps perpendicular to the substrate. These are tailored by controlling the kinetic energy of the ablated species during pulsed laser deposition (PLD). To fabricate the solar cells, CdS and CdSe inorganic sensitizers are assembled onto the architecture by successive ionic layer adsorption and reaction and polysulfide solution is used as an electrolyte with lead sulfide counter‐electrodes. The inorganic semiconductor solar cells using the developed architecture (PLD‐TiO2) show high energy conversion efficiencies of 5.57% compared to a conventional mesoporous TiO2 film(NP‐TiO2) (3.84%) with an optical mask at 1 sun of illumination. The improved cell performance of PLD‐TiO2 is attributed to greater light‐harvesting ability, which results in the enhancement of the Jsc value. PLD‐TiO2 absorbs more CdS/CdSe because of its larger surface area and excellent adhesion properties with fluorine‐doped tin oxide (FTO) substrates. Additionally, due to its unique channel‐shaped architecture, PLD‐TiO2 has a longer electron lifetime compared to NP‐TiO2.  相似文献   

19.
A step‐by‐step strategy is reported for improving capacitance of supercapacitor electrodes by synthesizing nitrogen‐doped 2D Ti2CTx induced by polymeric carbon nitride (p‐C3N4), which simultaneously acts as a nitrogen source and intercalant. The NH2CN (cyanamide) can form p‐C3N4 on the surface of Ti2CTx nanosheets by a condensation reaction at 500–700 °C. The p‐C3N4 and Ti2CTx complexes are then heat‐treated to obtain nitrogen‐doped Ti2CTx nanosheets. The triazine‐based p‐C3N4 decomposes above 700 °C; thus, the nitrogen species can be surely doped into the internal carbon layer and/or defect site of Ti2CTx nanosheets at 900 °C. The extended interlayer distance and c‐lattice parameters (c‐LPs of 28.66 Å) of Ti2CTx prove that the p‐C3N4 grown between layers delaminate the nanosheets of Ti2CTx during the doping process. Moreover, 15.48% nitrogen doping in Ti2CTx improves the electrochemical performance and energy storage ability. Due to the synergetic effect of delaminated structures and heteroatom compositions, N‐doped Ti2CTx shows excellent characteristics as an electrochemical capacitor electrode, such as perfectly rectangular cyclic voltammetry results (CVs, R2 = 0.9999), high capacitance (327 F g?1 at 1 A g?1, increased by ≈140% over pristine‐Ti2CTx), and stable long cyclic performance (96.2% capacitance retention after 5000 cycles) at high current density (5 A g?1).  相似文献   

20.
Overcoming ionic diffusion limitations is essential for the development of high‐efficiency dye‐sensitized solar cells based on cobalt redox mediators. Here, improved mass transport is reported for photoanodes composed of mesoporous TiO2 beads of varying pore sizes and porosities in combination with the high extinction YD2‐o‐C8 porphyrin dye. Compared to a photoanode made of 20 nm‐sized TiO2 particles, electrolyte diffusion through these films is greatly improved due to the large interstitial pores between the TiO2 beads, resulting in up to 70% increase in diffusion‐limited current. Simultaneously, transient photocurrent measurements reveal no mass transport limitations for films of up to 10 μm thickness. In contrast, standard photoanodes made of 20 nm‐sized TiO2 particles show non‐linear behavior in photocurrent under 1 sun illumination for a film thickness as low as 7 μm. By including a transparent thin mesoporous TiO2 underlayer in order to reduce optical losses at the fluorine‐doped tin oxide (FTO)‐TiO2 interface, an efficiency of 11.4% under AM1.5G 1 sun illumination is achieved. The combination of high surface area, strong scattering behavior, and high porosity makes these mesoporous TiO2 beads particularly suitable for dye‐sensitized solar cells using bulky redox couples and/or viscous electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号