首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Influenza B viruses, which cause a highly contagious respiratory disease every year, are restricted to humans, but the basis for this restriction had not been determined. Here we provide one explanation for this restriction: the species specificity exhibited by the NS1 protein of influenza B virus (NS1B protein). This viral protein combats a major host antiviral response by binding the interferon-α/β-induced, ubiquitin-like ISG15 protein and inhibiting its conjugation to an array of proteins. We demonstrate that the NS1B protein exhibits species-specific binding; it binds human and non-human primate ISG15 but not mouse or canine ISG15. In both transfection assays and virus-infected cells, the NS1B protein binds and relocalizes only human and non-human primate ISG15 from the cytoplasm to nuclear speckles. Human and non-human primate ISG15 proteins consist of two ubiquitin-like domains separated by a short hinge linker of five amino acids. Remarkably, this short hinge plays a large role in the species-specific binding by the NS1B protein. The hinge of human and non-human primate ISG15, which has a sequence that differs from that of other mammalian ISG15 proteins, including mouse and canine ISG15, is absolutely required for binding the NS1B protein. Consequently, the ISG15 proteins of humans and non-human primates are the only mammalian ISG15 proteins that would bind NS1B.  相似文献   

3.
《Reproductive biology》2020,20(4):547-554
Toll-like receptors (TLRs) participates in regulation of the maternal immune tolerance during pregnancy, and the thymus is critical for the adaptive immune system. This study hypothesized whether early pregnancy affected the expression of toll-like receptor pathway in the thymus of ewes. In this study, expression of TLRs, tumor necrosis factor receptor associated factor 6 (TRAF6), interleukin 1 receptor associated kinase 1 (IRAK1) and myeloid differentiation primary response gene 88 (MyD88) was detected in maternal thymus during early pregnancy in sheep. Ovine thymuses were collected on day 16 of the estrous cycle, and days 13, 16 and 25 of pregnancy, and expression of TLR members was analyzed by real-time quantitative PCR, western blot and immunohistochemistry analysis. The results revealed that there were decreases in the expression of the mRNA and proteins of TLR2, IRAK1, TRAF6 and MyD88, but increase in TLR5 mRNA and protein. Furthermore, expression of TLR3 and TLR4 proteins peaked at days 13 and 16 of gestation, and MyD88 protein was located in the epithelial reticular cells and thymic corpuscles. In summary, TLR signaling is implicated in regulation of maternal thymic immune, which may be via downregulation of TLR2, IRAK1, TRAF6 and MyD88 during early pregnancy in sheep.  相似文献   

4.
5.
ISG15 (interferon-stimulated gene 15), the first ubiquitin-like protein (UBL) identified, has emerged as an important cellular antiviral factor. It consists of two UBL domains with a short linker between them. The covalent attachment of ISG15 to host and viral proteins to modify their functions, similar to ubiquitylation, is named ISGylation. Influenza B virus NS1B protein antagonizes human but not mouse ISGylation because NS1B exhibits species specificity; it only binds human and non-human primate ISG15. Previous studies have demonstrated that the N-terminal UBL domain and linker of ISG15 are required for the binding by NS1B and that the linker plays a large role in the species specificity, but the structural basis for them has not been elucidated. Here we report the crystal structure of human ISG15 in complex with NS1B at a resolution of 2.0 Å. A loop in the ISG15 N-terminal UBL domain inserts into a pocket in the NS1B dimer, forming a high affinity binding site. The nonspecific van der Waals contacts around the ISG15 linker form a low affinity site for NS1B binding. However, sequence alignment reveals that residues in the high affinity site are highly conserved in primate and non-primate ISG15. We propose that the low affinity binding around the ISG15 linker is important for the initial contact with NS1B and that the stable complex formation is largely contributed by the following high affinity interactions between ISG15 N-terminal UBL domain and NS1B. This provides a structural basis for the species-specific binding of ISG15 by the NS1B protein.  相似文献   

6.
7.
ISG15(Interferon stimulated gene 15,ISG15)蛋白是由干扰素诱导产生的一种泛素样蛋白分子,分子量大小约为15kD。ISG15同泛素分子相类似可以被共价结合于其他蛋白分子上,这种现象称为ISG化(ISGylation)现象。ISG化系统包括ISG15、UBE1L、UBCH8和HERC5四类蛋白分子,协同完成ISG化过程。ISG15及ISG化系统在抗病毒反应中具有重要作用。近几年对于ISG15的抗病毒作用和机制的研究已经有了很大的突破,ISG15的抗病毒作用也越来越受到人们重视,了解清楚ISG15抗病毒机制对于研制新的抗病毒药物及提出新的抗病毒策略具有重要意义。本文对ISG15在不同种病毒中的抗病毒机制研究进展进行了简要综述。  相似文献   

8.
9.
Calcium plays an essential role in regulating many cellular functions, including proliferation, differentiation, and apoptosis. In spite of its importance in the establishment and maintenance of pregnancy, changes in calcium levels at the maternal–conceptus interface during pregnancy and its action on endometrial gene expression are not well understood. Thus, we examined changes in calcium levels in the endometrium during pregnancy, calcium deposition at the maternal–conceptus interface during pregnancy, and the role of calcium on the expression of endometrial genes related to conceptus implantation during early pregnancy in pigs. The amounts of endometrial calcium increased during mid‐ to late pregnancy, and calcium deposition was mainly localized to endometrial and chorionic epithelial cells at the maternal–conceptus interface during pregnancy and conceptus tissues during early pregnancy. The amounts of total recoverable calcium in uterine flushings were greater on Day 12 of pregnancy than Day 12 of the estrous cycle, and estrogen increased absorption of calcium ions by endometrial tissues. Increasing endometrial calcium levels by treatment with A23187, a calcium ionophore, decreased the expression of the estrogen‐responsive endometrial genes AKR1B1, ESR1, FGF7, IL1RAP, LPAR3, S100G, SPP1, and STC1 and increased the expression of genes related to prostaglandin synthesis and transport, namely PTGES, PTGS2, and SLCO5A1. These data suggest that calcium ions at the maternal–conceptus interface play a critical role in the establishment and maintenance of pregnancy in pigs by regulating the expression of endometrial genes involved in conceptus implantation, as well as the attachment of endometrial epithelial and conceptus trophectoderm/chorionic epithelial cells during pregnancy.  相似文献   

10.
Yuan W  Krug RM 《The EMBO journal》2001,20(3):362-371
Of the several hundred proteins induced by interferon (IFN) alpha/beta, the ubiquitin-like ISG15 protein is one of the most predominant. We demonstrate the novel way in which the function of the ISG15 protein is inhibited by influenza B virus, which strongly induces the ISG15 protein: a specific region of the influenza B virus NS1 protein, which includes part of its effector domain, blocks the covalent linkage of ISG15 to its target proteins both in vitro and in infected cells. We identify UBE1L as the E1 enzyme that catalyzes the first activation step in the conjugation of ISG15, and show that the NS1B protein inhibits this activation step in vitro. Influenza A virus employs a different strategy: its NS1 protein does not bind the ISG15 protein, but little or no ISG15 protein is produced during infection. We discuss the likely basis for these different strategies.  相似文献   

11.
The aldo–keto reductase (AKR) proteins catalyze reduction of diverse aldehydes and play detoxification roles in many organisms. Since many substrates are shared among AKR, it is generally accepted that these enzymes can functionally compensate each other in response to oxidative stress. Their overall abundances are the important factor that partially reflects the capacity of antioxidant and detoxification in tissues. In this study, the strategy was proposed for generation of Pan‐AKR antibodies to recognize most AKR proteins in mouse tissues. Derived from bioinformatic analysis, several consensus peptides with different potential antigenicities were synthesized, conjugated to hemocyanin from keyhole limpets and further delivered to rabbits to generate polyclonal antibodies. Three Pan‐AKR antibodies exhibited the immune specificities and immune sensitivities, Pan‐AKR‐P1 for AKR1B and AKR1C, Pan‐AKR‐P3 for AKR1C and Pan‐AKR‐P4 for all the AKR proteins. Pan‐AKR‐P4 antibody was employed to 2‐DE Western blot to examine the AKR abundances in mouse liver and kidney, resulting in seven immune‐reactive spots from each tissue. Protein identification with MS revealed that most immune‐positive spots were the members of AKR superfamily. Furthermore, Pan‐AKR‐P4 antibody was implemented to compare the different abundances of the AKR proteins in liver and kidney between normal and diabetic mice, suggesting that diabetes did cause some abnormal changes in the AKR protein abundances.  相似文献   

12.
13.
ISG15 (ISG15 ubiquitin-like modifier), a ubiquitin-like protein, is one of the major type I IFN (interferon) effector systems. ISG15 can be conjugated to target proteins (ISGylation) via the stepwise action of E1, E2, and E3 enzymes. Conjugated ISG15 can be removed (deISGylated) from target proteins by USP18 (ubiquitin-specific peptidase 18). Here we investigated the role of deISGylation by USP18 in regulating autophagy and EGFR degradation in cells treated with type I IFNs. We show that type I IFN induced expression of ISG15 leads to ISGylation of BECN1 at Lys117, as well as Lys263, Lys265, and Lys266 which competes with Lys63 ubiquitination of BECN1. We demonstrate that ISGylation of BECN1 at Lys117, as well as Lys263, Lys265, and Lys266 serve an important role in negative regulation of intracellular processes including autophagy and EGFR degradation that are critically dependent upon the activity of class III PtdIns 3-kinase. Our studies provide fundamental new mechanistic insights into the innate immunity response implemented by type I IFNs.  相似文献   

14.
目的:干扰素刺激基因15蛋白(Interferon-stimulated Gene 15,ISG15)是由I型干扰素诱导产生的类泛素蛋白,在先天免疫中起重要作用,本文旨在阐明ISG15的表达水平对巨噬细胞功能的影响并进一步探究其作用机制。方法:构建ISG15过表达质粒并通过慢病毒感染的方法整合进入THP-1细胞中,通过流式细胞仪分选出单克隆ISG15过表达细胞系,利用Western Blotting的方法验证ISG15在细胞内的过表达效果。在构建成功的细胞系中进行CCK8细胞增殖实验和Latex Beads细胞吞噬实验,最后通过定量蛋白质组学的方法观察细胞内蛋白质水平上变化。结果:Western Blotting的结果验证了ISG15在THP-1巨噬细胞系中的过表达效果,证明了ISG15过表达巨噬细胞系的成功构建。CCK8细胞增殖实验的结果表明,ISG15过表达的细胞系与对照组细胞系相比其增殖能力减弱;Latex beads细胞吞噬实验显示ISG15过表达细胞系的吞噬能力发生下降,并在蛋白质组学数据中找到糖酵解相关酶和膜转运蛋白下调的证据。结论:ISG15过表达能够降低与糖酵解相关的蛋白从而导致增殖能力的下降;同时也引起膜转运相关蛋白下调造成吞噬能力降低。  相似文献   

15.
16.
Aldoketoreductase 1B5 (AKR1B5), a member of the Aldoketoreductase family, is involved in the production of Prostaglandin F2α (PGF2α) as one of vital prostaglandin F synthase (PGFS). PGs (Prostaglandins) play a crucial role in female reproductive system. In the present study, we cloned and characterized the full-length open reading frame of AKR1B5 gene in Black Bengal (BB) goat. The complete coding sequence of AKR1B5 comprises an entire open reading frame of 951 bp, encoding 316 amino acid (AA) residues. BB AKR1B5 showed >82.9% identity with that of cattle, rabbit, human, and rat at nucleotide and amino acid levels, respectively. Further, a systematic study of AKR1B5 sequence evolution was also conducted using Phylogenetic Analysis by Maximum Likelihood (PAML), entropy plot, and Blossum 62 in a phylogenetic context. Analysis of nonsynonymous to synonymous nucleotide substitution rate ratios (Ka/Ks) revealed that negative selection may have been operating on this gene during evolution in goat, cattle, rabbit, human, and rat, which showed its conservation across species. Further, expression of AKR1B5 was determined by quantitative real-time PCR in goat endometrial tissues at different stages of the estrous cycle and early pregnancy. Our results indicated its high expression at luteolytic phase (stage III; day 16–21) during the estrous cycle. However, during early (day ~30–40) pregnancy the expression was highest as compared to estrous cycle.  相似文献   

17.
Interferon stimulated gene 15 (ISG15), an ubiquitin cross-reactive protein, can conjugate to target proteins. Unlike ubiquitination, protein modification by ISG15 does not target protein for degradation, but enhances the cellular response to interferon (IFN), which plays a key role in antiviral responses. In this study, Western blot and/or immunocytochemistry were performed to explore the ISG15 expression patterns in explants of bovine endometrium, mammary gland and kidney, as well as Madin-Darby bovine kidney (MDBK), endometrial and mammary cells stimulated by IFN-α, -β, and -τ. Western blot indicated that there are differential minimum antiviral units among recombinant bovine interferon-α (rbIFN-α, 10(2) IU/mL), rbIFN-β (10(3) IU/mL) and rbIFN-τ (10(4) IU/mL) in regard to stimulating saturation expression of free and ISG15-conjugated proteins by MDBK cells and endometrial and mammary explants. These results were further confirmed through immunocytochemical analysis of MDBK, endometrial and mammary cells. For the first time it has been shown that the expression pattern of ISG15-conjugated proteins occurs in a tissue-specific manner. Furthermore, the present findings provide the first evidence of 10- to 100-fold differences in minimum antiviral units of rbIFN-α, rbIFN-β, and rbIFN-τ in regard to stimulating saturation expression of ISG15.  相似文献   

18.
Though the interferon-inducible protein ISG15 was one of the first ubiquitin-like modifiers to be discovered, much remains unknown about the identity of proteins conjugated to ISG15 or the biologic consequences of modification. To gain a better understanding of the cellular pathways affected by ISG15, we identified proteins targeted for ISGylation using a proteomic approach. Mass spectrometric analysis identified 76 candidate ISGylation targets in anti-ISG15 immunoprecipitates from interferon-treated mouse or human cells. Twenty-one proteins were found in both mouse and human samples, including STAT1, a known target of ISGylation. Candidates identified in both species were tested for ISGylation in a transfection system: 18 of 19 proteins tested were ISGylated in this system. Two candidates, EF-2 and VCP, were also shown to be ISGylated in an interferon-dependent manner in the absence of exogenous over-expression. Seven proteins identified from a single species, but functionally related to candidates found in both species, were also ISGylated in the over-expression system. Proteins that can be ISGylated play important roles in translation, glycolysis, stress responses, and cell motility. These data indicate that ISGylation targets proteins found in several fundamentally important cellular pathways and will contribute to understanding the physiologic role of interferon-induced ISG15 and ISG15 conjugation.  相似文献   

19.
Kuang Z  Seo EJ  Leis J 《Journal of virology》2011,85(14):7153-7161
Budding of retroviruses from cell membranes requires ubiquitination of Gag and recruitment of cellular proteins involved in endosome sorting, including endosome sorting complex required for transport III (ESCRT-III) protein complex and vacuolar protein sorting 4 (VPS4) and its ATPase. In response to infection, a cellular mechanism has evolved that blocks virus replication early and late in the budding process through expression of interferon-stimulated gene 15 (ISG15), a dimer homologue of ubiquitin. Interferon treatment of DF-1 cells blocks avian sarcoma/leukosis virus release, demonstrating that this mechanism is functional under physiological conditions. The late block to release is caused in part by a loss in interaction between VPS4 and its coactivator protein LIP5, which is required to promote the formation of the ESCRT III-VPS4 double-hexamer complex to activate its ATPase. ISG15 is conjugated to two different LIP5-ESCRT-III-binding charged multivesicular body proteins, CHMP2A and CHMP5. Upon ISGylation of each, interaction with LIP5 is no longer detected. Two other ESCRT-III proteins, CHMP4B and CHMP6, are also conjugated to ISG15. ISGylation of CHMP2A, CHMP4B, and CHMP6 weakens their binding directly to VPS4, thereby facilitating the release of this protein from the membrane into the cytosol. The remaining budding complex fails to release particles from the cell membrane. Introducing a mutant of ISG15 into cells that cannot be conjugated to proteins prevents the ISG15-dependent mechanism from blocking virus release. CHMP5 is the primary switch to initiate the antiviral mechanism, because removal of CHMP5 from cells prevents ISGylation of CHMP2A and CHMP6.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号