首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analyses of arthropod genomes have shown that the genes in the different innate humoral immune responses are conserved. These genes encode proteins that are involved in immune signalling pathways that recognize pathogens and activate immune responses. These immune responses include phagocytosis, encapsulation of the pathogen and production of effector molecules for pathogen elimination. So far, most studies have focused on insects leaving other major arthropod groups largely unexplored. Here, we annotate the immune‐related genes of six arachnid genomes and present evidence for a conserved pattern of some immune genes, but also evolutionary changes in the arachnid immune system. Specifically, our results suggest that the family of recognition molecules of beta‐1,3‐glucanase‐related proteins (βGRPs) and the genes from the immune deficiency (IMD) signalling pathway have been lost in a common ancestor of arachnids. These findings are consistent with previous work suggesting that the humoral immune effector proteins are constitutively produced in arachnids in contrast to insects, where these have to be induced. Further functional studies are needed to verify this. We further show that the full haemolymph clotting cascade found in the horseshoe crab is retrieved in most arachnid genomes. Tetranychus lacks at least one major component, although it is possible that this cascade could still function through recruitment of a different protein. The gel‐forming protein in horseshoe crabs, coagulogen, was not recovered in any of the arachnid genomes; however, it is possible that the arachnid clot consists of a related protein, spätzle, that is present in all of the genomes.  相似文献   

2.
Serpins are known to be necessary for the regulation of several serine protease cascades. However, the mechanisms of how serpins regulate the innate immune responses of invertebrates are not well understood due to the uncertainty of the identity of the serine proteases targeted by the serpins. We recently reported the molecular activation mechanisms of three serine protease-mediated Toll and melanin synthesis cascades in a large beetle, Tenebrio molitor. Here, we purified three novel serpins (SPN40, SPN55, and SPN48) from the hemolymph of T. molitor. These serpins made specific serpin-serine protease pairs with three Toll cascade-activating serine proteases, such as modular serine protease, Spätzle-processing enzyme-activating enzyme, and Spätzle-processing enzyme and cooperatively blocked the Toll signaling cascade and β-1,3-glucan-mediated melanin biosynthesis. Also, the levels of SPN40 and SPN55 were dramatically increased in vivo by the injection of a Toll ligand, processed Spätzle, into Tenebrio larvae. This increase in SPN40 and SPN55 levels indicates that these serpins function as inducible negative feedback inhibitors. Unexpectedly, SPN55 and SPN48 were cleaved at Tyr and Glu residues in reactive center loops, respectively, despite being targeted by trypsin-like Spätzle-processing enzyme-activating enzyme and Spätzle-processing enzyme. These cleavage patterns are also highly similar to those of unusual mammalian serpins involved in blood coagulation and blood pressure regulation, and they may contribute to highly specific and timely inactivation of detrimental serine proteases during innate immune responses. Taken together, these results demonstrate the specific regulatory evidences of innate immune responses by three novel serpins.  相似文献   

3.
Serine protease inhibitors (serpins) constitute a still expanding superfamily of structural similar proteins, which are localized extracellularly and intracellularly. Serpins play a central role in the regulation of a wide variety of (patho) physiological processes including coagulation, fibrinolysis, inflammation, development, tumor invasion, and apoptosis. Serpins have a unique mechanism of inhibition that involves a profound change in conformational state upon interaction with their protease. This conformational change enables the production of monoclonal antibodies specific for native, complexed, and inactivated serpins. Antibodies, and assays based on these antibodies, have been helpful in elucidating the (patho) physiological function of serpins in the last decade. Serpin-specific antibodies can be used for: (1) structure-function studies such as detection of conformational changes; (2) identification of target-proteases; (3) the detection and quantification of serpin and serpin-protease complexes in bodily fluids by immunoassays such as ELISA, RIA or FACS; (4) detection of serpins in tissues by immunohistochemistry; and (5) possible therapeutical interventions. This review summarizes the techniques we have used to obtain and screen antibodies against extra- and intracellular serpins, as well as the use of these antibodies for some of the above-mentioned purposes.  相似文献   

4.
Mycobacterium tuberculosis (Mtb) infection can be cleared by the innate immune system before the initiation of an adaptive immune response. This innate protection requires a variety of robust cell autonomous responses from many different host immune cell types. However, Mtb has evolved strategies to circumvent some of these defences. In this mini‐review, we discuss these host–pathogen interactions with a focus on studies performed in human cells and/or supported by human genetics studies (such as genome‐wide association studies).  相似文献   

5.
The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called ‘pathogen‐associated molecular patterns’ (PAMPs). Pathogens use virulence factors to counteract PAMP‐directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram‐negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP‐directed responses and are critical for infection. A plasmid‐encoded T3SS in the human‐pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences.  相似文献   

6.
Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships.  相似文献   

7.
Protease inhibitors and their cognate proteases regulate growth, development and defense. Serine protease inhibitors (serpins) constitute a large family of genes in most metazoans and plants. Drosophila NECROTIC (NEC) gene and its homologues in the mammalian system are well‐characterized serpins, which play a role in regulating proteases that participate in cell death pathways. Although the Arabidopsis genome contains several serpin homologs, biological function is not known for most of them. Here we show that two Arabidopsis serpins, AtSRP4 and AtSRP5, are closest sequence homologue of Drosophila NEC protein, and are involved in stress‐induced cell death and defense. Expression of both AtSRP4 and AtSRP5 genes induced upon ultra‐violet (UV)‐treatment and inoculation with avirulent pathogens. The knockout mutants and amiRNA lines of AtSRP4 and AtSRP5 exaggerated UV‐ and hypersensitive response (HR)‐induced cell death. Over‐expression of AtSRP4 reduced UV‐ and HR‐induced cell death. Mutants of AtSRP4 and AtSRP5 suppressed whereas over‐expression of AtSRP4 supported the growth of bacterial pathogen Pseudomonas syringae pv. tomato DC3000 carrying the AvrRpt2 effector, but not other avirulent or virulent pathogens. Results altogether identified AtSRP4 and AtSRP5 as negative regulators of stress‐induced cell death and AvrRpt2‐triggered immunity; however, the influence of AtSRP4 was more prominent than AtSRP5.  相似文献   

8.
Control of proteolysis is important for plant growth, development, responses to stress, and defence against insects and pathogens. Members of the serpin protein family are likely to play a critical role in this control through irreversible inhibition of endogenous and exogenous target proteinases. Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting an endogenous cysteine proteinase. Here, knowledge of plant serpins in terms of sequence diversity, inhibitory specificity, gene expression and function is reviewed. This was advanced through a phylogenetic analysis of amino acid sequences of expressed plant serpins, delineation of plant serpin gene structures and prediction of inhibitory specificities based on identification of reactive centres. The review is intended to encourage elucidation of plant serpin functions.  相似文献   

9.
Serpins are serine protease inhibitors with a conserved structure that have been identified in nearly all species and act as suicide substrates by binding covalently to their target proteases. Serpins regulate various physiological processes and defence mechanisms. In humans, several serpin mutations are linked to diseases. The genome of Drosophila melanogaster encodes 29 serpins and even more serine proteases. To date, three serpins have been investigated in detail. Spn27A controls the Toll pathway during early development and is involved in defence reactions in adult flies. SPN42DaA is an inhibitor of furin, a subtilisin-like convertase that is required for pro-protein maturation. Spn43Ac controls the Toll pathway during the immune response. In each case, Drosophila genetics has shed new light on the function of these serine protease inhibitors.  相似文献   

10.
11.
Candida albicans is an opportunistic fungal pathogen of humans causing superficial mucosal infections and life‐threatening systemic disease. The fungal cell wall is the first point of contact between the invading pathogen and the host innate immune system. As a result, the polysaccharides that comprise the cell wall act as pathogen associated molecular patterns, which govern the host–pathogen interaction. The cell wall is dynamic and responsive to changes in the external environment. Therefore, the host environment plays a critical role in regulating the host–pathogen interaction through modulation of the fungal cell wall. This review focuses on how environmental adaptation modulates the cell wall structure and composition, and the subsequent impact this has on the innate immune recognition of C. albicans.  相似文献   

12.
13.
14.
Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki = 1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1∶2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.  相似文献   

15.
16.
Mycobacterium tuberculosis, the infectious agent of human tuberculosis is a master player in circumventing the defense mechanisms of the host immune system. The host‐pathogen interaction in the case of an infection with M. tuberculosis is highly complex, involving dedicated mycobacterial virulence factors as well as the action of the innate and adapted immune systems, which determine the outcome of infection. Macrophages play a key role in this process through internalizing the bacterium in a phagosomal vacuole. While this action has normally the function of eliminating invading bacteria, M. tuberculosis employs efficient strategies to prevent its extermination. The question on how‐and‐where the bacterium succeeds in doing so has interested generations of scientists and still remains a fascinating and important research subject focused on mycobacterial lipids, secretion systems and other contributing factors. This topic is also central to the longstanding and partially controversial discussion on mycobacterial phagosomal rupture and vacuole‐to‐cytosol translocation, to be reviewed here in more detail.  相似文献   

17.
Antimicrobial peptides are important components of the host innate immune responses by exerting broad‐spectrum microbicidal activity against pathogenic microbes. Cy‐AMP1 found in the cycad (Cycas revoluta) seeds has chitin‐binding ability, and the chitin‐binding domain was conserved in knottin‐type and hevein‐type antimicrobial peptides. The recombinant Cy‐AMP1 was expressed in Escherichia coli and purified to study the role of chitin‐binding domain. The mutants of Cy‐AMP1 lost chitin‐binding ability completely, and its antifungal activity was markedly decreased in comparison with native Cy‐AMP1. However, the antimicrobial activities of the mutant peptides are nearly identical to that of native one. It was suggested that the chitin‐binding domain plays an essential role in antifungal, but not antimicrobial, activity of Cy‐AMP1. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Tissue damage or pathogen invasion triggers the auto-proteolysis of an initiating serine protease (SP), rapidly leading to sequential cleavage activation of other cascade members to set off innate immune responses in insects. Recently, we presented evidence that Manduca sexta hemolymph protease-1 zymogen (proHP1) is a member of the SP system in this species, and may activate proHP6. HP6 stimulates melanization and induces antimicrobial peptide synthesis. Here we report that proHP1 adopts an active conformation (*) to carry out its function, without a requirement for proteolytic activation. Affinity chromatography using HP1 antibodies isolated from induced hemolymph the 48 kDa proHP1 and also a 90 kDa band (detected by SDS-PAGE under reducing conditions) containing proHP1 and several serpins, as revealed by mass spectrometric analysis. Identification of tryptic peptides from these 90 kDa complexes included peptides from the amino-terminal regulatory part of proHP1, indicating that proHP1* was not cleaved, and that it had formed a complex with the serpins. As suicide inhibitors, serpins form SDS-stable, acyl-complexes when they are attacked by active proteases, indicating that proHP1* was catalytically active. Detection of M. sexta serpin-1, 4, 9, 13 and smaller amounts of serpin-3, 5, 6 in the complexes suggests that it is regulated by multiple serpins in hemolymph. We produced site-directed mutants of proHP1b for cleavage by bovine blood coagulation factor Xa at the designed proteolytic activation site, to generate a form of proHP1b that could be activated by Factor Xa. However, proHP1b cut by Factor Xa failed to activate proHP6 and, via HP6, proHP8 or proPAP1. This negative result is consistent with the suggestion that proHP1* is a physiological mediator of immune responses. Further research is needed to investigate the conformational change that results in conversion of proHP1 to active proHP1*.  相似文献   

19.
Serine Protease inhibitors (Serpins) like antithrombin, antitrypsin, neuroserpin, antichymotrypsin, protein C-inhibitor and plasminogen activator inhibitor is involved in important biological functions like blood coagulation, fibrinolysis, inflammation, cell migration and complement activation. Serpins native state is metastable, which undergoes transformation to a more stable state during the process of protease inhibition. Serpins are prone to conformation defects, however little is known about the factors and mechanisms which promote its conformational change and misfolding. Helix B region in serpins is with several point mutations which result in pathological conditions due to polymerization. Helix B analysis for residue burial and cavity was undertaken to understand its role in serpin structure function. A structural overlap and an accessible surface area analysis showed the deformation of strand 6B and exposure of helix B at N-terminal end in cleaved conformation but not in the native and latent conformation of various inhibitory serpins. A cleaved polymer like conformation of antitrypsin also showed deformation of s6B and helix B exposure. Cavity analysis showed that helix B residues were part of the largest cavity in most of the serpins in the native state which increase in size during the transformation to cleaved and latent states. These data for the first time show the importance of strand 6B deformation and exposure of helix B in smooth insertion of the reactive center loop during serpin inhibition and indicate that helix B exposure due to variants may increase its polymer propensity. ABBREVIATIONS: serpin -serine protease inhibitors RCL -reactive center loop ASA -accessible surface area.  相似文献   

20.
Serine protease inhibitors (serpins) play very important roles in the maintenance of various physiologically important systems. As knowledge of the workings of proteins of this family grows, new understanding is gained of the mechanisms by which they inhibit target proteases, using conformational changes for which the structure of serpins is uniquely adapted. This finely balanced system is utilized to healthy benefit in the control of serpin function by modulators, arguably the most striking examples of which occur in the control of proteolytic cascades, such as the coagulation system. Serpins also play very important intracellular roles: one example is the protection of immune cells from their own cytotoxic proteases. The finely balanced serpin mechanism also means that it is prone to disastrous consequences if mutations should occur in vital positions in the serpin structure. Many examples of disease-associated mutations have been shown, which has the dual effect of highlighting how important these molecules are in the maintenance of health and the fine balance that must be maintained in order to preserve their active, inhibitory conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号