首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protected areas are critical for the conservation of many threatened species. Despite this, many protected areas are acutely underfunded, which reduces their effectiveness significantly. Tourism is one mechanism to promote and fund conservation in protected areas, but there are few studies analyzing its tangible conservation outcomes for threatened species. This study uses the 415 IUCN critically endangered frog species to evaluate the contribution of protected area tourism revenue to conservation. Contributions were calculated for each species as the proportion of geographic range inside protected areas multiplied by the proportion of protected area revenues derived from tourism. Geographic ranges were determined from IUCN Extent of Occurrence maps. Almost 60% (239) of critically endangered frog species occur in protected areas. Higher proportions of total range are protected in Nearctic, Australasian and Afrotopical regions. Tourism contributions to protected area budgets ranged from 5–100%. These financial contributions are highest for developing countries in the Afrotropical, Indomalayan and Neotropical regions. Data for both geographic range and budget are available for 201 critically endangered frog species with proportional contributions from tourism to species protection ranging from 0.8–99%. Tourism''s financial contributions to critically endangered frog species protection are highest in the Afrotropical region. This study uses a coarse measure but at the global scale it demonstrates that tourism has significant potential to contribute to global frog conservation efforts.  相似文献   

2.
The Republic of Guinea harbours the largest population of the endangered western chimpanzees Pan troglodytes verus, and the conservation of this population is regarded as a regional priority. Chimpanzees occur in 3 of the 5 protected areas in Guinea but their conservation status is unknown. We conducted a chimpanzee census in 2001–2002 in the Haut Niger National Park (HNNP), the largest protected area in the country. We counted nests along a total of 103.83 km of transects in the Mafou forest, 1 of the 2 core areas of the park. We recorded a total of 823 nests, of which 38.1% were located in gallery forests, although this habitat type covers only 4.2% of the study site. Using a site-specific mean nest decay rate of 194 days, we estimated the mean density of chimpanzees in the study area at 0.87 weaned individuals/km2, the highest density recorded in any West African protected area. A survey conducted in 2008–2009 by other authors in the Mafou forest suggests that the chimpanzee population remained stable over the last 6 yr. Given the significance of the chimpanzee population of the HNNP at the national and international levels, we provide recommendations for its conservation over the long term. Our results highlight the importance of gallery forests as key habitat for chimpanzees in the savannah biome. We therefore recommend that more attention be paid to the conservation of this habitat in land management and conservation planning schemes. In particular, we recommend setting aside gallery forests as ecological corridors between nearby protected areas to maintain exchange between distant chimpanzee populations.  相似文献   

3.
Aim Most approaches to conservation prioritization are focused on biodiversity features that are already threatened. While this is necessary in the face of accelerating anthropogenic threats, there have been calls to conserve large intact landscapes, often termed ‘wilderness’, to ensure the long‐term persistence of biodiversity. In this study, we examine the consequences of directing conservation expenditure using a threat‐based framework for wilderness conservation. Location The Australian continent. Methods We measured the degree of congruence between the extent of wilderness and the Australian protected area network in 2000 and 2006, which was established using a threat‐based systematic planning framework. We also assessed priority areas for future reserve acquisitions identified by the Australian government under the current framework. Results In 2000, 14% of Australia’s wilderness was under formal protection, while the protected area network covered only 8.5% of the continent, suggesting a historical bias towards wilderness protection. However, the expansion of the reserve system from 2000 to 2006 was biased towards non‐wilderness areas. Moreover, 90% of the wilderness that was protected over this period comprised areas not primarily designated for biodiversity conservation. We found a significant (P < 0.05) negative relationship between bioregions considered to be a priority for future reserve prioritization and the amount of wilderness they contain. Main conclusions While there is an urgent need to overcome past biases in reserve network design so as to better protect poorly represented species and habitats, prioritization approaches should not become so reactive as to ignore the role that large, intact landscapes play in conserving biodiversity, especially in a time of human‐induced climate change. This can be achieved by using current or future threats rather than past threats to prioritize areas, and by incorporating key ecological processes and costs of acquisition and management within the planning framework.  相似文献   

4.
To prioritise conservation actions and management strategies for threatened forest deer species at the Atlantic forest, we aimed to identify and describe the most suitable habitat areas for forest deer species and to indicate conservation measures for state agents and local communities. We adopt an approach based on ecological niche modelling, key variable thresholds and spatial analyses. In addition, we associated our approach with a human influence index, an invasive species dataset of occurrences, protected area cover and IUCN category. We indicate 2 % (484 km2) of the Atlantic forest cover as conservation priority areas (CPAs). Of these, 56.8 % are outside protected areas, 20.7 % are inside IUCN categories i, ii and iii protected areas, 19.9 % are inside IUCN categories iv, v, and vi protected areas, and 2.6 % are inside indigenous areas. Also, we indicate the most relevant protected areas for deer conservation in the Atlantic forest. The CPAs were classified into more human-influenced areas (MHIA) and less human-influenced areas (LHIA), and we identified 21 significant (greater than120 km2) continuous CPAs outside protected areas. We highlight actions in several perspectives of human influence, governance levels and law protection that would rationalise the use of funds and human resources.  相似文献   

5.
Aim The aim of this study was to use compositional changes in tree species along the Amazon River floodplain in Brazil to identify and characterize biogeographic regions that would serve as broad surrogates for conservation planning. Location The main course of the Amazon River in Brazil, covering a river distance of approximately 2800 km. Methods Two sampling methods were employed at specific sites: standardized transects and/or individual‐based samples. Seventy‐three samples were collected from 26 sites at approximately 100‐km intervals along the floodplain. Biogeographic regions were identified by non‐metric multidimensional scaling (NMDS) ordination and by a hierarchical cluster analysis. The relative influence of environmental components (flood depths, annual rainfall, and length of the dry season) on tree species composition and one spatial component (longitude) were analysed by multiple regressions against a one‐dimensional NMDS ordination axis. Results Based on tree species composition, three main biogeographic regions were identified: a western region between Tabatinga and the Negro River confluence; a central region from the Negro River confluence to the Xingu confluence; and an estuarine region from the Xingu confluence to Santana. The regions identified were consistent using different data sets and analytical techniques. Mixed environmental and spatial effects explained most of the variation, but the spatial effect alone had a greater influence on species composition than environmental effects alone. Main conclusions The regions delimited in the analyses differed from those based on geomorphology or World Wildlife Fund (WWF) ecoregions. These results reinforce the need for surrogates to be tested against biological data before they are used to shape approaches to conservation planning. Although a protected area coverage of 25% gives the impression of extensive conservation management on the floodplain, less than 1% of the Amazon’s floodplain in Brazil is strictly protected. The significant compositional differences between regions and the strong spatial variation along the Amazon indicate that strict protection areas should be distributed much more evenly within and between regions.  相似文献   

6.
With only five protected areas dedicated to the conservation of biodiversity (two national parks, one strict nature reserve and two faunal reserves), Guinea has one of the smallest protected area networks in West Africa. As a result, two of the five ecoregions of the country and six of the 14 globally threatened large and medium-sized mammals occurring in Guinea are not found in the national protected area network. To identify areas with high biodiversity that could be included in the national protected area network, we used the Key Biodiversity Areas (KBA) methodology. We devised a scoring system to rank the identified KBAs according to their relative conservation significance. We identified a total of 16 KBAs throughout the country. Their proclamation as protected areas would result in the protection of all ecoregions and all but one of Guinea’s globally threatened large and medium-sized mammals. Twelve of the 16 KBAs have the legal status of classified forest, a status that should facilitate the change into formal biodiversity protected areas (IUCN category I–IV). Our analysis indicates that even if only the two areas with the highest conservation significance score, the Ziama and Diécké forests, become formal protected areas, this would provide protection to both the western Guinean lowland forests, one of the most threatened ecoregions in Africa, and to 11 of the 14 threatened large and medium-sized mammals occurring in Guinea.  相似文献   

7.
Liquid biofuel production will likely have its greatest impact through the large‐scale changes in land use that will be required to meet the production of this energy source. In this study, we develop a framework which integrates species distribution models, land cover, land capability and various biodiversity conservation data to identify natural areas with (i) a potentially high risk of transformation for biofuel production and (ii) potential impact to biodiversity conservation areas. The framework was tested in the Eastern Cape of South Africa, a region which has been earmarked for the cultivation of biofuels. We expressly highlight the importance of biodiversity conservation data that enhance the protected area network to limit potential losses by comparing the overlap of areas likely to become cultivated with (i) protected areas; (ii) biodiversity hot spots not currently protected; and (iii) ‘ecological corridors’ (areas deemed important for the migration of species and linkages between important biodiversity areas). Results indicate that the introduction of spatial filters reduced available land from 54% to 45%. Including all biodiversity scenarios reduced available land to 15% of the Eastern Cape should avoiding conflict with biodiversity conservation areas be prioritized. The assumption that agriculturally marginal land offers a unique opportunity to be converted to biofuel crops does not consider the biodiversity value attached to these areas. We highlight that decisions relating to large‐scale transformation and changes in land cover need to take account of broader ecological processes. Determining the spatial extent of threats to biodiversity facilitates the analysis of spatial conflict. This article demonstrates a proactive approach for anticipating likely habitat transformation and provides an objective means of mitigating potential conflict with existing land use and biodiversity.  相似文献   

8.
Costa Rica has one of the greatest percentages (26%) of protected land in the world. The National Protected Areas System (NPAS) of Costa Rica was established in 1976 and currently includes >190 protected areas within seven different protection categories. The effectiveness of the NPAS to represent species, populations, and areas with high species richness has not been properly evaluated. Such evaluations are fundamental to understand what is necessary to strengthen the NPAS and better protect biodiversity. We present a novel assessment of NPAS effectiveness in protecting mammal species. We compiled the geographical ranges of all terrestrial Costa Rican mammals then determined species lists for all protected areas and the estimated proportion of each species’ geographic range protected. We also classified mammal species according to their conservation status using the IUCN Red List of Threatened Species. We found almost complete representation of mammal species (98.5%) in protected areas, but low relative coverage (28.3% on average) of their geographic ranges in Costa Rica and 25% of the species were classified as underprotected according to a priori representation targets. Interestingly, many species-rich areas are not protected, and at least 43% of cells covering the entire country are not included in protected areas. Though protected areas in Costa Rica represent species richness well, strategic planning for future protected areas to improve species complementarity and range protection is necessary. Our results can help to define sites where new protected areas can have a greater impact on mammal conservation, both in terms of species richness and range protection.  相似文献   

9.
The establishment of baseline IUCN Red List assessments for plants is a crucial step in conservation planning. Nowhere is this more important than in biodiversity hotspots that are subject to significant anthropogenic pressures, such as Madagascar. Here, all Madagascar palm species are assessed using the IUCN Red List categories and criteria, version 3.1. Our results indicate that 83% of the 192 endemic species are threatened, nearly four times the proportion estimated for plants globally and exceeding estimates for all other comprehensively evaluated plant groups in Madagascar. Compared with a previous assessment in 1995, the number of Endangered and Critically Endangered species has substantially increased, due to the discovery of 28 new species since 1995, most of which are highly threatened. The conservation status of most species included in both the 1995 and the current assessments has not changed. Where change occurred, more species have moved to lower threat categories than to higher categories, because of improved knowledge of species and their distributions, rather than a decrease in extinction risk. However, some cases of genuine deterioration in conservation status were also identified. Palms in Madagascar are primarily threatened by habitat loss due to agriculture and biological resource use through direct exploitation or collateral damage. The recent extension of Madagascar’s protected area network is highly beneficial for palms, substantially increasing the number of threatened species populations included within reserves. Notably, three of the eight most important protected areas for palms are newly designated. However, 28 threatened and data deficient species are not protected by the expanded network, including some Critically Endangered species. Moreover, many species occurring in protected areas are still threatened, indicating that threatening processes persist even in reserves. Definitive implementation of the new protected areas combined with local community engagement are essential for the survival of Madagascar’s palms.  相似文献   

10.
Endemicity is important for the delimitation of conservation areas. Endemic areas are those that contain two or more taxa with their distribution restricted to the area. The aim of this study was to detect endemic areas for palms in the Amazon region and to determine whether the species that define these endemic areas are protected within conservation units. Records of occurrence were extracted from the global biodiversity information facility (GBIF). The final dataset consisted of 17,310 records, for 177 species of Amazonian palms. For analysis we used parsimony analysis of endemicity (PAE) and NDM-VNDM program, and grid square size of 1° and 3° as operational geographic units (OGUs). The distribution of endemic species was superimposed on occurrence of the conservation units (CUs). PAE did not show endemic areas in grid squares of 1°, but found 10 palm endemic areas in grid squares of 3° in the western Amazon and Andean sub-region. However, the NDM-VNDM program identified an endemic area in grid squares of 1° located at the eastern Guiana with endemicity score = 2.9, and in grid squares of 3° it identified seven consensus areas with endemicity score > 6.0, all in the western Amazon. The combination of PAE and NDM-VNDM analyses resulted in eight endemic palm areas in the combined western Amazon and Andean sub-region. Of the species that define the endemic areas, five are threatened with extinction in one of three IUCN categories (EN, VU, NT), and they are not protected in any conservation units. The western Amazon, besides having high palm richness, also has palm endemic areas, especially, near the Andean sub-region and the Peruvian Amazon.  相似文献   

11.
Transitioning from fossil fuels to renewable energy is fundamental for halting anthropogenic climate change. However, renewable energy facilities can be land‐use intensive and impact conservation areas, and little attention has been given to whether the aggregated effect of energy transitions poses a substantial threat to global biodiversity. Here, we assess the extent of current and likely future renewable energy infrastructure associated with onshore wind, hydropower and solar photovoltaic generation, within three important conservation areas: protected areas (PAs), Key Biodiversity Areas (KBAs) and Earth's remaining wilderness. We identified 2,206 fully operational renewable energy facilities within the boundaries of these conservation areas, with another 922 facilities under development. Combined, these facilities span and are degrading 886 PAs, 749 KBAs and 40 distinct wilderness areas. Two trends are particularly concerning. First, while the majority of historical overlap occurs in Western Europe, the renewable electricity facilities under development increasingly overlap with conservation areas in Southeast Asia, a globally important region for biodiversity. Second, this next wave of renewable energy infrastructure represents a ~30% increase in the number of PAs and KBAs impacted and could increase the number of compromised wilderness areas by ~60%. If the world continues to rapidly transition towards renewable energy these areas will face increasing pressure to allow infrastructure expansion. Coordinated planning of renewable energy expansion and biodiversity conservation is essential to avoid conflicts that compromise their respective objectives.  相似文献   

12.
理清自然保护地的空间关系与分布格局是加强空间管控、整合优化自然保护地体系的基础。以大熊猫国家公园四川片区内的自然保护地为案例,基于ArcGIS空间数据的处理、分析与可视化表达等功能,结合韦恩(Venn)图在空间层面上量化分析了公园范围内各类自然保护地的空间关系,并进一步揭示了不同保护情景下大熊猫(Ailuropoda melanoleuca)的分布格局。研究结果表明:(1)研究区内含有6类自然保护地,占研究区总面积的75.13%,其中40.68%为交叉重叠区域。(2)各类自然保护地皆存在大面积的交叉重叠。自然保护区为研究区面积最大的自然保护地类型,占自然保护地总面积的72.53%,其中45.89%为交叉重叠区域;其他类自然保护地占自然保护地总面积的60.87%,其中66.48%为交叉重叠区域。(3)猫点密度与自然保护地的交叉重叠程度呈现逆向增长趋势,区域的重叠水平越高,猫点密度越低。(4)自然保护地整体非重叠区的猫点密度高于重叠区。自然保护区是整体猫点密度最高的自然保护地类型,其非重叠区密度明显高于重叠区;森林公园非重叠区与水利风景区重叠区呈现较高的猫点密度。(5)与自然保护区交叉重叠的自然保护地中,位于自然保护区的猫点密度远高于其他重叠区。由此可见,大熊猫国家公园四川片区内原有自然保护地体系体量大但空间关系复杂,不同区域间的保护效能既不平衡也不充分。建议将研究区内自然保护区的非重叠区、位于自然保护区的世界遗产地区域、森林公园的非重叠区以及水利风景区的重叠区等作为大熊猫的核心保护区,施行严格保护;将自然保护区的重叠区、世界遗产地的其他区域作为生态保育区,恢复受损退化的大熊猫栖息地及所在的自然生态系统;将其他区域作为一般控制区,在有效维护大熊猫种群及其栖息地的前提下适度开展人为活动。同时,建议对空间重叠和邻近相接的区域开展科学评估,明确自然保护地的唯一属性。另一方面,我们期待健全自然保护地管理体制,统筹自然保护地的空间布局,为以国家公园为主体的自然保护地体系建设"松体制之绑"。  相似文献   

13.
This study applied MARXAN to identify cost-efficient areas for biodiversity protection, within the Thy National Park in Denmark. Public authorities have requested a more systematic approach to managing public land, which identifies cost-effective solutions and potential trade-offs between economic cost and biodiversity benefits. The aim of this study was to support the local management staff in setting conservation targets and prioritizing their management efforts. This was addressed through the creation of two primary scenarios: i) applying uniform conservation targets to all biodiversity features, and ii) heterogeneous targets addressing various degrees of conservation importance. Four sub-scenarios were established for each primary scenario to investigate the implications of various conservation targets on conservation cost. Local data on red-listed species and habitat types were used to assess biodiversity benefits. Detailed cost estimates of required conservation actions were included. The results indicated that scenarios with uniform conservation targets provided more flexible networks of protected areas but contributed less to target achievement and a smaller share of selected planning units overlapped with current protected areas. Applying heterogeneous targets based on threat status resulted in a higher degree of target achievement and compactness, but provided less flexible networks. However, these networks may be more suitable for efficient management due to a higher level of clustering and spatial overlap with threatened species distributions.  相似文献   

14.
Migrant birds face a number of threats throughout their annual cycle, including persecution, collision with energy infrastructure, and habitat and climate change. A key challenge for the conservation of migrants is the identification of important habitat, including migratory concentration areas, because species survival rates may be determined by events in geographically very limited areas. Remote‐tracking technology is facilitating the identification of such critical habitat, although the strategic identification of important sites and incorporation of such knowledge in conservation planning remains limited. We tracked 45 individuals of an endangered, soaring migrant (Egyptian vulture Neophron percnopterus), over 75 complete migrations that traversed three continents along the Red Sea Flyway. We summarize and contextualize migration statistics by season and age class, including migration start, midpoint, and end dates, as well as linear and cumulative migration distance, migration duration and speed, and route straightness. Then, using dynamic Brownian bridge movement models, we quantified space use to identify the most important migratory bottlenecks and high‐use areas on the flyway. These areas each accounted for < 5% of the overall movement range of the tracked birds, yet > 20% of all tracks passed through bottlenecks, and > 50% of the overall vulture time spent on migration fell within high‐use areas. The most important sites were located at the southeastern Red Sea coast and Bab‐el‐Mandeb Strait (Saudi Arabia, Yemen, Djibouti), the Suez Canal zone (Egypt), and the Gulf of Iskenderun (Turkey). Discouragingly however, none of the area within the major migratory bottlenecks was protected and < 13% of the high‐use areas were protected. This demonstrates a very concerning gap in the protected area network for migratory soaring birds along the Red Sea Flyway. Because reducing threats at migratory concentrations can be a very efficient approach to protect populations, our work provides clear guidelines where conservation investment is urgently needed to benefit as many as 35 migratory soaring‐bird species that regularly use the Red Sea Flyway.  相似文献   

15.
全球正在经历第六次物种大灭绝。为了应对生物多样性丧失速率日益加快的严峻挑战, 《生物多样性公约》第十届缔约方大会通过了《生物多样性战略计划》(2011-2020年)及20项爱知生物多样性目标。然而, 2019年IPBES全球评估报告表明, 大部分爱知目标可能无法在2020年实现, 因此, 自然保护需要变革性转变。中国虽然在生物多样性保护方面取得了巨大成就, 提出了系统完整的生态文明制度及建立“以国家公园为主体的自然保护地体系”的目标, 并通过绿盾行动和环保督察提升了生物多样性保护的重要性, 陆地自然保护地覆盖率也已达到18%, 但仍未有效遏制生物多样性下降的趋势, 物种濒危程度持续加剧。尽管生态文明一系列改革已经做出了变革性转变, 中央层面大力推行生物多样性“主流化”的相关政策, 通过机构改革初步解决了自然保护地“九龙治水”的问题, 在国土空间规划和生态保护红线划定中强调了生物多样性保护的重要性, 但是, 生物多样性保护仍然缺乏系统性的解决策略, 需要在不同层面进一步落实“主流化”, 建立完整的法律体系和统一规范高效的保护机制, 保障保护资金, 明确生物多样性在生产、生活空间中的地位, 打通自然保护成果与经济利益的转化渠道。因此, 中国的生物多样性保护应当借助生态文明建设的历史性机遇, 在保护意识、空间布局和保护行动3个方面充分实现变革性的转变, 借助五位一体总体布局, 采用系统化的解决方法, 进一步整合法律、行政、市场、技术和社会等五方面力量, 提出具体的实现路径, 实现保护意识主流化、保护利用统筹化和保护行动全民化等三方面变革性的转变, 形成高效一体化的机制, 以实现“人与自然和谐相处”的生物多样性保护理想状态。  相似文献   

16.
Prey depletion is a major threat to the conservation of large carnivore species globally. However, at the policy‐relevant scale of protected areas, we know little about how the spatial distribution of prey depletion affects carnivore space use and population persistence. We developed a spatially explicit, agent‐based model to investigate the effects of different human‐induced prey depletion experiments on the globally endangered tiger (Panthera tigris) in isolated protected areas—a situation that prevails throughout the tiger's range. Specifically, we generated 120 experiments that varied the spatial extent and intensity of prey depletion across a stylized (circle) landscape (1,000 km2) and Nepal's Chitwan National Park (~1,239 km2). Experiments that created more spatially homogenous prey distributions (i.e., less prey removed per cell but over larger areas) resulted in larger tiger territories and smaller population sizes over time. Counterintuitively, we found that depleting prey along the edge of Chitwan National Park, while decreasing tiger numbers overall, also decreased female competition for those areas, leading to lower rates of female starvation. Overall our results suggest that subtle differences in the spatial distributions of prey densities created by various human activities, such as natural resource‐use patterns, urban growth and infrastructure development, or conservation spatial zoning might have unintended, detrimental effects on carnivore populations. Our model is a useful planning tool as it incorporates information on animal behavioral ecology, resource spatial distribution, and the drivers of change to those resources, such as human activities.  相似文献   

17.
Despite the growing numbers of threatened species and high levels of spending on their recovery worldwide, there is surprisingly little evidence about which conservation approaches are effective in arresting or reversing threatened species declines. Using two government data sets, we examined associations between population trends for 841 nationally-threatened terrestrial species in Australia, and four measures of conservation effort: (a) how much their distribution overlaps with strictly protected areas (IUCN I–IV), (b) and other protected areas (IUCN V–VI), (c) the number of recovery activities directed at the species, and (d) numbers of natural resource conservation activities applied in areas where populations of the threatened species occur. We found that all populations of 606 (72%) species were in decline. Species with greater distributional overlap with strictly protected areas had proportionately more populations that were increasing or stable. This effect was robust to geographic range size, data quality differences and extent of protection. Measures other than strictly protected areas showed no positive associations with stable or increasing trends. Indeed, species from regions with more natural resource conservation activities were found to be more likely to be declining, consistent with differential targeting of such generalised conservation activities to highly disturbed landscapes. Major differences in trends were also found among the different jurisdictions in which species predominantly occurred, which may be related to different legislative protections against habitat destruction. Although we were not able to test causation, this research corroborates other evidence that protected areas contribute to the stabilization or recovery of threatened species, and provides little empirical support for other conservation approaches.  相似文献   

18.
金宇  周可新  高吉喜  穆少杰  张小华 《生态学报》2016,36(23):7702-7712
准确可靠地识别国家重点保护陆生脊椎动物物种的优先保护区,是生物多样性保护的热点问题之一。采用随机森林(random forests)模型,基于12个环境变量,对中国263种国家重点保护陆生脊椎动物建模,并预测各个物种在背景点的适生概率,迭加计算得到国家重点保护陆生脊椎动物物种的生境适宜性指数。此外,基于对生境适宜性指数的空间自相关分析,识别和确定国家重点保护陆生脊椎动物物种优先保护区,并对优先保护区目前的被保护情况进行分析。结果表明,国家重点保护陆生脊椎动物物种的优先保护区的面积为103.16万km~2,约占我国国土面积的10.90%。优先保护区主要分布在我国的西部地区,包括西南地区的秦岭-大巴山山区、云南省与印度及缅甸的交界地区、武陵山山区、喜马拉雅山-横断山脉山区、阿尔泰山脉山区、天山山脉山区、昆仑山山脉山区;东北的大、小兴安岭、东北-华南沿海地区及长江中下游地区有少量分布。优先保护区中被保护的面积为50.40万km~2,占优先保护区总面积的48.86%,保护率偏低,未被充分保护。利用系统聚类分析,将未被保护的优先保护区划分成3种优先保护顺序,以期为相关部门的决策提供科学依据,更好地保护生物多样性。  相似文献   

19.
运用系统保护规划方法,进行了黄淮海地区湿地生态系统保护多预案分析研究.研究中以集水区为保护规划单元,综合考虑河流湿地生态系统、非河流湿地生态系统、保护物种、地下水等生物信息和路网、居民分布、水坝等社会经济信息,以及已有湿地保护区信息,以二维(2D)连接性(横向连接性、纵向连接性)和三维(3D)连接性(横向连接性、纵向连接性、垂向连接性)为原则,模拟研究了不同保护目标和不同保护格局聚集性的湿地保护预案.结果表明:基于2D连接性的研究,对河流湿地、非河流湿地和物种设定30%的保护目标,选取边界长度调节(BLM)值为0.36的保护格局聚集性,以此得到的保护方案相对合理;而基于3D连接性时,对河流湿地、非河流湿地和保护物种设定30%的保护目标,地下水设定55%的保护目标,选取0.06边界长度调节值的保护格局聚集性,得到的保护方案相对合理;基于3D连接性保护方案的效率要比基于2D连接性的高.对于严重缺水的黄淮海地区来说,3D连接性的考虑不仅必要,而且可行,具有重要的现实意义.  相似文献   

20.
Grassland birds are among the most globally threatened bird groups due to substantial degradation of native grassland habitats. However, the current network of grassland conservation areas may not be adequate for halting population declines and biodiversity loss. Here, we evaluate a network of grassland conservation areas within Wisconsin, U.S.A., that includes both large Focal Landscapes and smaller targeted conservation areas (e.g., Grassland Bird Conservation Areas, GBCAs) established within them. To date, this conservation network has lacked baseline information to assess whether the current placement of these conservation areas aligns with population hot spots of grassland‐dependent taxa. To do so, we fitted data from thousands of avian point‐count surveys collected by citizen scientists as part of Wisconsin''s Breeding Bird Atlas II with multinomial N‐mixture models to estimate habitat–abundance relationships, develop spatially explicit predictions of abundance, and establish ecological baselines within priority conservation areas for a suite of obligate grassland songbirds. Next, we developed spatial randomization tests to evaluate the placement of this conservation network relative to randomly placed conservation networks. Overall, less than 20% of species statewide populations were found within the current grassland conservation network. Spatial tests demonstrated a high representation of this bird assemblage within the entire conservation network, but with a bias toward birds associated with moderately tallgrasses relative to those associated with shortgrasses or tallgrasses. We also found that GBCAs had higher representation at Focal Landscape rather than statewide scales. Here, we demonstrated how combining citizen science data with hierarchical modeling is a powerful tool for estimating ecological baselines and conducting large‐scale evaluations of an existing conservation network for multiple grassland birds. Our flexible spatial randomization approach offers the potential to be applied to other protected area networks and serves as a complementary tool for conservation planning efforts globally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号