首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Humans are occasionally exposed to extreme environmental heat for a prolonged period of time. Here, we investigated testicular responses to whole‐body heat exposure by placing mice in a warm chamber. Among the examined tissues, the testis was found to be most susceptible to heat stress. Heat stress induces direct responses within germ cells, such as eukaryotic initiation factor 2α phosphorylation and stress granule (SG) formation. Prolonged heat stress (42°C for 6 hr) also disturbed tissue organization, such as through blood‐testis barrier (BTB) leakage. Germ cell apoptosis was induced by heat stress for 6 hr in a cell type‐ and developmental stage‐specific manner. We previously showed that spermatocytes in the early tubular stages (I–VI) form SGs for protection against heat stress. In the mid‐tubular stages (VII–VIII), BTB leakage synergistically enhances the adverse effects of heat stress on pachytene spermatocyte apoptosis. In the late tubular stages (IX–XII), SGs are not formed and severe leakage of the BTB does not occur, resulting in mild apoptosis of late‐pachytene spermatocytes near meiosis. Our results revealed that multiple stress responses are involved in germ cell damage resulting from prolonged heat stress (42°C for 6 hr).  相似文献   

2.
Crofton weed is an invasive weed in southwestern China. The activities of several antioxidative enzymes involved in plant protection against oxidative stress were assayed to determine physiological aspects of the crofton weed that might render the plant vulnerable to environmental stress. Stresses imposed on crofton weed were heat (progressively increasing temperatures: 25 ℃, 30 ℃, 35 ℃, 38℃ and 42 ℃ at 24 h intervals), cold (progressively decreasing temperatures: 25 ℃, 20 ℃, 15℃, 10 ℃ and 5℃ at 24h intervals), and drought (without watering up to 4days). The three stresses induced oxidative damage as evidenced by an increase in lipid peroxidation. The effect varied with the stress imposed and the length of exposure. The activity of superoxide dismutase (SOD) increased in response to all stresses but was not significantly different from the controls (P 〈 0.05) when exposed to cold stress. Catalase (CAT) activity decreased in response to heat and drought stress but increased when exposed to cold conditions. Guaiacol peroxidase (POD) and glutathione reductase (GR) activities increased in response to cold and drought but decreased in response to heat stress. The activity of ascorbata peroxidase (APX) responded differently to all three stresses. Monodehydroascorbate reductase (MDHAR) activity decreased in response to heat and drought, and slightly increased in response to the cold stress but was not significantly different from the controls (P 〈 0.05). The activity of dehydroascorbata reductase (DHAR) increased in response to all three stresses. Taken together, the co-ordinate increase of the oxygen-detoxifying enzymes might be more effective to protect crofton weed from the accumulation of oxygen radicals at low temperatures rather than at high temperatures.  相似文献   

3.
The olive fruit fly Bactrocera (Dacus) oleae Gmelin is a major olive pest in Greece and other Mediterranean countries. Its population density and respective olive infestation is usually low in many areas of northern Greece during summer months. To some extent, this may be due to the prevailing high temperature and low relative humidity conditions. In the present work the effects of short term exposure to high temperatures on the survival and egg production of B. oleae pre‐imaginal stages and adults were studied under laboratory conditions. Different larval instars within infested green olive fruits, adults and pupae and were exposed for 2 h to a series of different high constant temperatures ranging from 34 to 42°C. Subsequently, survival percentages of pre‐imaginal stages and adults as well as the number of eggs laid by females previously exposed to high temperatures were determined. At temperatures up to 38°C high survival percentages of larvae and adults were observed, whereas pupae displayed a relatively increased heat tolerance up to 40°C. Female longevity and egg production were substantially reduced after heat stress. Prior acclimation at 33°C for 1 and 3 days resulted in increased adult survival following heat stress. We discuss the results with respect to the ability of the fly to survive and reproduce under high summer temperatures.  相似文献   

4.
A series of experiments were designed to study the effect of elevated temperatures on developmental competence of bovine oocytes and embryos produced in vitro. In experiment 1, the effect of heat shock (HS) by a mild elevated temperature (40.5°C) for 0, 30, or 60 min on the viability of in vitro matured (IVM) oocytes was tested following in vitro fertilization (IVF) and culture. No significant difference was observed between the control (39°C) and the heat‐treated groups in cleavage, blastocyst formation, or hatching (P > 0.05). In experiment 2, when the HS temperature was increased to 41.5°C, neither the cleavage rate nor blastocyst development was affected by treatment. However, the rate of blastocyst hatching appeared lower in the HS groups (13% in control group vs. 3.9% and 5.6% in 30 min and 60 min, respectively; P < 0.05). When IVM oocytes were treated at 43°C prior to IVF (experiment 3), no difference was detected in blastocyst and expanded blastocyst development following heat treatment for 0, 15, or 30 min, but heat treatment of oocytes for 45 or 60 min significantly reduced blastocyst and expanded blastocyst formation (P < 0.05). In experiment 4, the thermotolerance of day 3 and day 4 bovine IVF embryos were compared. When embryos were pre‐treated with a mild elevated temperature (40.5°C) for 1 hr, and then with a higher temperature (43°C) for 1 hr, no improvement in thermotolerance of the embryos was observed as compared to those treated at 43°C alone. However, a higher thermotolerance was observed in day 4 than day 3 embryos. In conclusion, treatment at 43°C, but not 40.5°C or 41.5°C significantly reduced oocyte developmental competence. An increase in thermotolerance was observed from day 3 to day 4 of in vitro embryonic development, which corresponds to the maternal to zygotic transition of gene expression in bovine embryos. Mol. Reprod. Dev. 53:336–340, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
Pre‐exposure to mild heat stress enhances the thermotolerance of insects. Stress hardening is a beneficial physiological plasticity, but the mechanism underlying it remains elusive. Here we report that reactive oxygen species (ROS) concentrations were quickly and transiently elevated in the armyworms, Mythimna separata, by exposing them to 40°C, but not other tested temperatures. Larvae exposed to 40°C had subsequently elevated antioxidant activity and the highest survival of all tested heating conditions. The elevation of ROS after lethal heating at 44°C for 1 h was approximately twofold compared to heating at 40°C. Injection of an optimal amount of hydrogen peroxide (H2O2) similarly caused sequential elevation of ROS and antioxidant activity in the test larval hemolymph, which led to significantly enhanced survival after lethal heat stress. The H2O2‐induced thermotolerance was abolished by coinjection of potent antioxidants such as ascorbic acid or N‐acetylcysteine. Both preheating at 40°C and H2O2 injection enhanced expression of genes encoding superoxide dismutase 1, catalase, and heat shock protein 70 in the fat body of test larvae, indicating the adequate heat stress induced a transient elevation of ROS, followed by upregulation of antioxidant activity. We infer that thermal stress hardening is induced by a small timely ROS elevation that triggers a reduction–oxidation signaling mechanism.  相似文献   

6.
The effect of exogenous 20‐hydroxyecdysone (20E) and juvenile hormone (JH) on the activities of the tyrosine decarboxylase (TDC), the first enzyme in octopamine (OA) synthesis, has been studied in young females of wild type D. virilis and D. melanogaster under normal and heat stress (38°C) conditions. Flies fed 20E expressed increased TDC activity in both species. JH application decreased TDC activity in both species. A rise in JH and 20E levels did not prevent a TDC response to heat stress, but changed the response intensity. A long‐term increase in JH titre had no effect on the activity of main OA catabolyzing enzyme, arylalkylamine N‐acetyltransferase, in females of both species. A possible mechanism of regulation of OA levels by 20E and JH in Drosophila females is discussed. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
The CRISPR/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off‐target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37°C show much higher frequencies of CRISPR‐induced mutations compared to plants grown continuously at the standard temperature (22°C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5‐fold in somatic tissues and up to 100‐fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37°C. In vitro assays demonstrate that Cas9 from Streptococcus pyogenes (SpCas9) is more active in creating double‐stranded DNA breaks at 37°C than at 22°C, thus indicating a potential contributing mechanism for the in vivo effect of temperature on CRISPR/Cas9. This study reveals the importance of temperature in modulating SpCas9 activity in eukaryotes, and provides a simple method to increase on‐target mutagenesis in plants using CRISPR/Cas9.  相似文献   

8.
Exercise promotes transitory alterations in cytokine secretion, and these changes are affected by exercise duration and intensity. Considering that exercise responses also are affected by environmental factors, the goal of the present study was to investigate the effect of water temperature on the cytokine response to maximum swimming. Swiss mice performed a maximum progressive swimming exercise at 31 or 38 °C, and plasma cytokine levels were evaluated immediately or 1, 6 or 24 h after exercise. The cytokine profile after swimming at 31 °C was characterized by increased interleukin (IL)‐6 and monocyte chemotactic protein‐1 (MCP‐1) levels, which peaked 1 h after exercise, suggesting an adequate inflammatory milieu to induce muscle regeneration. Transitory reductions in IL‐10 and IL‐12 levels also were observed after swimming at 31 °C. The cytokine response to swimming was modified when the water temperature was increased to 38 °C. Although exercise at 38 °C also led to IL‐6 secretion, the peak in IL‐6 production occurred 6 h after exercise, and IL‐6 levels were significantly lower than those observed after maximum swimming at 31 °C (p = 0·030). Furthermore, MCP‐1 levels were lower and tumour necrosis factor‐α levels were higher immediately after swimming at 38 °C, suggesting a dysregulated pro‐inflammatory milieu. These alterations in the cytokine profile can be attributed in part to reduced exercise total work because exhaustion occurred sooner in mice swimming at 38 °C than in those swimming at 31 °C. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Tobacco (Nicotiana tabacum) Bright Yellow‐2 (TBY‐2) cells undergo different fates when exposed for 10 minutes to heat stresses of different severity. A 35 °C treatment causes a homeostatic response (HRE) allowing cells to cope with the stress; 55 °C triggers processes leading to programmed cell death (PCD), which is complete after 72 h. We have used a proteomic approach to gain insight into the molecular mechanisms defining the fate of TBY‐2 cells induced by these two heat stresses. Tandem mass spectrometry (MS/MS) and two‐dimensional electrophoresis (2‐DE) analysis revealed little overlap of differentially‐accumulated proteins: the different severities of heat treatment induced the modulation of specific proteins, some of which are responsible for different cell fates. When the imposed heat shock is beyond a certain threshold, the overall reduced metabolism may be the result of a series of events involving gene expression and oxidative damage that would lead to PCD. Our data suggest that the down‐accumulation of several proteins involved in cellular redox homeostasis could provide, until now, an unappreciated contribution to understanding how many partners are involved in promoting the redox impairment leading to PCD. Moreover post‐translational modifications seem to play important regulatory roles in the adaptation of TBY‐2 cells to different intensities of heat stress.  相似文献   

10.
Thermal environments can influence many fitness‐related traits including life span. Here, we assess whether longevity in Drosophila melanogaster can experimentally evolve as a correlated response to cold‐stress selection, and whether genotype‐by‐temperature and sex‐by‐temperature interactions are significant components of variation in life span. Three replicated S lines were cold‐stress selected and compared with their respective unselected controls (Clines) in the 16th generation of thermal selection. Cold‐stress resistance exhibited a substantial direct response to selection, and also showed a significant interaction between sex and type of line. Mean longevity exhibited a significant interaction between adult test temperature (14 and 25 °C) and line (with suggestive evidence for increased longevity of S lines when tested at 14 °C), but there was no evidence for increased longevity in S lines at normal temperatures (i.e. 25 °C). Another temperature‐dependent effect was sex‐specific, with males being the longer lived sex at 25 °C but the less long‐lived sex at 14 °C. Additionally, we tested in an exploratory way the relationship between longevity and cold‐stress resistance by also measuring resistance to a prefreezing temperature before and after one generation of longevity selection at 14 °C (selection intensity, i = 1.47 for S lines, and 1.42 for C lines). In this longevity selection, we found that cold‐stress resistance increased by about 6% in S lines and 18% in C lines. However, taken together, the results indicate no simple relationship between longevity and cold‐stress resistance, with genotype‐by‐sex interactions in both traits. Temperature dependent interaction in longevity is apparent between S and C lines, and sex‐specific variation in mean longevity also depends on temperature.  相似文献   

11.
12.
Exposure to sublethal heat stress activates a complex cascade of signaling events, such as activators (NO), signal molecules (PKCε), and mediators (HSP70 and COX-2), leading to implementation of heat preconditioning, an adaptive mechanism which makes the organism more tolerant to additional stress. We investigated the time frame in which these chemical signals are triggered after heat stress (41?±?0.5°С/45 min), single or repeated (24 or 72 h after the first one) in heart tissue of male Wistar rats. The animals were allowed to recover 24, 48 or 72 h at room temperature. Single heat stress caused a significant increase of the concentration of HSP70, NO, and PKC level and decrease of COX-2 level 24 h after the heat stress, which in the next course of recovery gradually normalized. The second heat stress, 24 h after the first one, caused a significant reduction of the HSP70 levels, concentration of NO and PKC?, and significant increase of COX-2 concentration. The second exposure, 72 h after the first heat stress, caused more expressive changes of HSP70 and NO in the 24 h-recovery groups. The level of PKC? was not significantly changed, but there was significantly increased COX-2 concentration during recovery. Serum activity of AST, ALT, and CK was reduced after single exposure and increased after repeated exposure to heat stress, in both time intervals. In conclusion, a longer period of recovery (72 h) between two consecutive sessions of heat stress is necessary to achieve more expressive changes in mediators (HSP70) and triggers (NO) of heat preconditioning.  相似文献   

13.
14.
Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress‐dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25–44 °C (long‐term stress) or shock‐heating leaves to 45–50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long‐term stress and collapse of photosynthetic activity after heat shock stress were associated with non‐stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long‐term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long‐term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat‐stressed B. nigra plants, especially upon chronic stress that leads to induction responses.  相似文献   

15.
Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label‐free quantitative shotgun proteomic analysis was performed. A total of 2042 non‐redundant proteins were identified from the five temperature points. Fifty‐five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold‐responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 ( http://proteomecentral.proteomexchange.org/dataset/PXD000977 ).  相似文献   

16.
During the past several decades, corals worldwide have been affected by severe bleaching events leading to wide‐spread coral mortality triggered by global warming. The symbiotic Red Sea coral Stylophora pistillata from the Gulf of Eilat is considered an opportunistic ‘r’ strategist. It can thrive in relatively unstable environments and is considered a stress‐tolerant species. Here, we used a S. pistillata custom microarray to examine gene expression patterns and cellular pathways during short‐term (13‐day) heat stress. The results allowed us to identify a two‐step reaction to heat stress, which intensified significantly as the temperature was raised to a 32 °C threshold, beyond which, coping strategies failed at 34 °C. We identified potential ‘early warning genes’ and ‘severe heat‐related genes’. Our findings suggest that during short‐term heat stress, S. pistillata may divert cellular energy into mechanisms such as the ER‐unfolded protein response (UPR) and ER‐associated degradation (ERAD) at the expense of growth and biomineralization processes in an effort to survive and subsequently recover from the stress. We suggest a mechanistic theory for the heat stress responses that may explain the success of some species which can thrive under a wider range of temperatures relative to others.  相似文献   

17.
Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimental materials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclimation (HA) and in heat-treated plants after cold acclimation (CA) were observed and compared using transmission electron microscopy. The results showed that slight injury appeared in the ultrastructure of mesophyll cells after either HA (38℃ for 10 h) or CA (8℃ for 2.5 d), but the tolerance to subsequent extreme temperature stress was remarkably improved by HA or CA pretreatment. The increases in membrane permeability and malondialdehyde concentration under chilling (0℃) or heat (45℃) stress were markedly inhibited by HA or CA pretreatment. The mesophyll cells of plants not pretreated with HA were markedly damaged following chilling stress. The chloroplasts appeared irregular in shape, the arrangement of the stroma lamellae was disordered, and no starch granules were present. The cristae of the mitochondria were disrupted and became empty. The nucleus became irregular in shape and the nuclear membrane was digested. In contrast, the mesophyll cells of HA-pretreated plants maintained an intact ultrastructure under chilling stress. The mesophyll cells of control plants were also severely damaged under heat stress. The chloroplast became round in shape, the stroma lamellae became swollen, and the contents of vacuoles formed clumps. In the case of mitochondria of control plants subjected to heat stress, the outer envelope was digested and the cristae were disrupted and became many small vesicles. Compared with cellular organelles in control plants, those in CA plant cells always maintained an integrated state during whole heat stress, except for the chloroplasts, which became round in shape after 10 h heat stress. From these data, we suggest that the stability of mesophyll cells under chilling stress can be increased by HA pretreatment. Similarly, CA pretreatment can protect chloroplasts, mitochondria, and the nucleus against subsequent heat stress; thus, the thermoresistance of grape seedlings was improved. The results obtained in the present study are the first, to our knowledge, to offered cytological evidence of cross-adaptation to temperature stresses in grape plants.  相似文献   

18.
Determining whether a stressful event will lead to stress‐resilience or vulnerability depends probably on an adjustable stress response set point, which is most likely effective during postnatal sensory development and involves the regulation of corticotrophin‐releasing hormone (CRH) expression. During the critical period of thermal‐control establishment in 3‐day‐old chicks, heat stress was found to render resilient or sensitized response, depending on the ambient temperature. These two different responses were correlated with the amount of activation of the hypothalamic–pituitary–adrenal (HPA) axis. The expression of CRH mRNA in the hypothalamic paraventricular nucleus was augmented during heat challenge a week after heat conditioning in chicks which were trained to be vulnerable to heat, while it declined in chicks that were trained to be resilient. To study the role of CRH in HPA‐axis plasticity, CRH or Crh‐antisense were intracranially injected into the third ventricle. CRH caused an elevation of both body temperature and plasma corticosterone level, while Crh‐antisense caused an opposite response. Moreover, these effects had long term implications by reversing a week later, heat resilience into vulnerability and vice versa. Chicks that had been injected with CRH followed by exposure to mild heat stress, normally inducing resilience, demonstrated, a week later, an elevation in body temperature, and Crh mRNA level similar to heat vulnerability, while Crh‐antisense injected chicks, which were exposed to harsh temperature, responded in heat resilience. These results demonstrate a potential role for CRH in determining the stress resilience/vulnerability balance. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 842–853, 2015  相似文献   

19.
Heat stress can detrimentally affect the reproductive capacity of many plants. The effect of a 7 or 14 d heat stress on flowering, seed set, pollen viability and germinability of flax (Linum usistatissimum L.) was assessed under growth chamber conditions. An incremental (2 °C/h), cyclical (daytime high 40 °C and night‐time low 18 °C) heat stress was applied 12 d after the initiation of flowering. Although flower formation in flax was not affected by heat stress, boll formation and seed set were reduced with onset of the heat stress. On removal of heat stress the stressed plants showed a compensatory response, flowering and producing bolls at a greater rate than the control plants. Heat stress significantly prolonged flowering by 17 d. Boll weight and seed weight were reduced with heat stress and the number of malformed, sterile seed increased three‐fold after 14 d of heat stress. Pollen viability and appearance were negatively affected after 6 and 10 d of heat stress, respectively. Pollen germinability decreased by the sixth day of heat stress, with no pollen germinating by the tenth day. Effects of heat stress on pollen viability and germinability alone, which did not occur until after the sixth day of the stress, could not account for the decreased boll formation due to heat stress in flax. These observations suggest that a combined effect of heat stress on both pollen and ovules contributes to decreased boll formation and seed set in flax.  相似文献   

20.
The planthopper Delphacodes kuscheli is the main vector of Mal de Río Cuarto virus in Argentina, disease that severely affects maize production. In this study, we investigated the effects of heat stress on fitness traits and on the number of its obligate yeast‐like symbionts (YLS). The exposition of newly‐hatched nymphs to 35°C for 3 days, a well‐known procedure used to reduce the number of YLS in planthoppers, was applied. To compare different fitness components between control and heat‐treated insects, we estimated nymphal instars development time, nymphal survival, adult body length, longevity, fecundity and fertility. Also, correlates of fitness, as proportion of sexes and wing forms of the emerging adults, were evaluated. In heat‐treated group, the nymphal developmental time increased due to an increase in the fifth instar duration, and the nymphal survival, body length of adults and fecundity were reduced when compared to control. There was a significant association between treatments (control and heat‐treated insects) and wing morphs. The heat treatment successfully reduced the number of YLS in third instar nymphs of D. kuscheli. Our results revealed the negative effect of heat stress on development, survival and reproduction of D. kuscheli and on the load of its YLS endosymbionts suggesting that YLS could play a crucial role in the development and reproduction of these planthoppers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号