首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid solvent evaporation method based on the triple point of a processing solvent is presented to prepare carbon nanotube (CNT) foam with a porous structure for thermoelectric (TE) power generators. The rapid solvent evaporation process allows the preparation of CNT foam with various sizes and shapes. The obtained highly porous CNT foam with porosity exceeding 90% exhibits a low thermal conductivity of 0.17 W m?1 K?1 with increased phonon scattering, which is 100 times lower than that of a CNT film with a densely packed network. The aforementioned structural and thermal properties of the CNT foam are advantageous to develop a sufficient temperature gradient between the hot and cold parts to enhance TE output characteristics. To improve the electrical conductivity and Seebeck coefficient further, p‐ and n‐molecular dopants are easily introduced into the CNT foam, and the optimized condition is investigated based on the TE properties. Finally, optimized p‐ and n‐doped CNT foams are used to fabricate a vertical and flexible TE power generator with a combination of series and parallel mixed circuits. The maximum output power and output power per weight of the TE generator reach 1.5 µW and 82 µW g?1, respectively, at a temperature difference of 13.9 K.  相似文献   

2.
Since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 in tin selenide (SnSe), the material has attracted much attention in the field of thermoelectrics. This paper reports a novel pseudo‐3D printing technique to fabricate bulk SnSe thermoelectric elements, allowing for the fabrication of standard configuration thermoelectric generators. In contrast to fabrication examples presented to date, this technique is potentially very low‐cost and allows for facile, scalable, and rapid fabrication. Bulk SnSe thermoelectric elements are produced and characterized over a wide range of temperatures. An element printed from an ink with 4% organic binder produces the highest performance, with a ZT value of 1.7 (±0.25) at 758 K. This is the highest ZT reported of any printed thermoelectric material, and the first bulk printed material to operate at this temperature. Finally, a proof‐of‐concept, all printed SnSe thermoelectric generator is presented, producing 20 µW at 772 K.  相似文献   

3.
Fiber‐based flexible thermoelectric energy generators are 3D deformable, lightweight, and desirable for applications in large‐area waste heat recovery, and as energy suppliers for wearable or mobile electronic systems in which large mechanical deformations, high energy conversion efficiency, and electrical stability are greatly demanded. These devices can be manufactured at low or room temperature under ambient conditions by established industrial processes, offering cost‐effective and reliable products in mass quantity. This article presents a critical overview and review of state‐of‐the‐art fiber‐based thermoelectric generators, covering their operational principle, materials, device structures, fabrication methods, characterization, and potential applications. Scientific and practical challenges along with critical issues and opportunities are also discussed.  相似文献   

4.
Colloidal quantum dots (CQDs) are attractive materials for thermoelectric applications due to their simple and low‐cost processing; advantageously, they also offer low thermal conductivity and high Seebeck coefficient. To date, the majority of CQD thermoelectric films reported upon have been p‐type, while only a few reports are available on n‐type films. High‐performing n‐ and p‐type films are essential for thermoelectric generators (TEGs) with large output voltage and power. Here, high‐thermoelectric‐performance n‐type CQD films are reported and showcased in high‐performance all‐CQD TEGs. By engineering the electronic coupling in the films, a thorough removal of insulating ligands is achieved and this is combined with excellent surface trap passivation. This enables a high thermoelectric power factor of 24 µW m?1 K?2, superior to previously reported n‐type lead chalcogenide CQD films operating near room temperature (<1 µW m?1 K?2). As a result, an all‐CQD film TEG with a large output voltage of 0.25 V and a power density of 0.63 W m?2 at ?T = 50 K is demonstrated, which represents an over fourfold enhancement to previously reported p‐type only CQD TEGs.  相似文献   

5.
6.
This study demonstrates the fabrication and characterization of a flexible thermoelectric (TE) power generator composed of silicon nanowires (SiNWs) fabricated by top‐down method and discusses its strain‐dependence analysis. The Seebeck coefficients of the p‐ and n‐type SiNWs used to form a pn‐module are 156.4 and ?146.1 µV K?1, respectively. The maximum power factors of the p‐ and n‐type SiNWs are obtained as 8.79 and 8.87 mW (m K2)?1, respectively, under a convex bending of 1.11%, respectively; these are the largest values among the power factors hitherto reported for SiNWs. The dimensionless figure of merit (ZT ) values of the SiNWs at room temperature are 6.8 × 10?2 and 6.7 × 10?2 for the convex bent p‐ and n‐type SiNWs, respectively, with a strain of 1.11%. The thermoelectric properties of the pn‐module and its component SiNWs are characterized under strain conditions ranging from ?1.11% to 1.11%. The maximum Seebeck coefficient and power factor of the pn‐module are obtained as 448 µV K?1 and 14.2 mW (m K2)?1, respectively, under convex bending of 1.11%. Moreover, the mechanical stability of the TE characteristics of the pn‐module is demonstrated through a continuous bending test of 3000 cycles under convex bending of 0.66%.  相似文献   

7.
Half‐Heusler (HH) compounds have shown great potential in waste heat recovery. Among them, p‐type NbFeSb and n‐type ZrNiSn based alloys have exhibited the best thermoelectric (TE) performance. However, TE devices based on NbFeSb‐based HH compounds are rarely studied. In this work, bulk volumes of p‐type (Nb0.8Ta0.2)0.8Ti0.2FeSb and n‐type Hf0.5Zr0.5NiSn0.98Sb0.02 compounds are successfully prepared with good phase purity, compositional homogeneity, and matchable TE performance. The peak zTs are higher than 1.0 at 973 K for Hf0.5Zr0.5NiSn0.98Sb0.02 and at 1200 K for (Nb0.8Ta0.2)0.8Ti0.2FeSb. Based on an optimal design by a full‐parameters 3D finite element model, a single stage TE module with 8 n‐p HH couples is assembled. A high conversion efficiency of 8.3% and high power density of 2.11 W cm?2 are obtained when hot and cold side temperatures are 997 and 342 K, respectively. Compared to the previous TE module assembled by the same materials, the conversion efficiency is enhanced by 33%, while the power density is almost the same. Given the excellent mechanical robustness and thermal stability, matchable thermal expansion coefficient and TE properties of NbFeSb and ZrNiSn based HH alloys, this work demonstrates their great promise for power generation with both high conversion efficiency and high power density.  相似文献   

8.
In an effort to create a paintable/printable thermoelectric material, comprised exclusively of organic components, polyaniline (PANi), graphene, and double‐walled nanotube (DWNT) are alternately deposited from aqueous solutions using the layer‐by‐layer assembly technique. Graphene and DWNT are stabilized with an intrinsically conductive polymer, poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). An 80 quadlayer thin film (≈1 μm thick), comprised of a PANi/graphene‐PEDOT:PSS/PANi/DWNT‐PEDOT:PSS repeating sequence, exhibits unprecedented electrical conductivity (σ ≈ 1.9 × 105 S m?1) and Seebeck coefficient (S ≈ 120 μV K?1) for a completely organic material. These two values yield a thermoelectric power factor (PF = S 2 σ ?1) of 2710 μW m?1 K?2, which is the highest value ever reported for a completely organic material and among the highest for any material measured at room temperature. These outstanding properties are attributed to the highly ordered structure in the multilayer assembly. This water‐based thermoelectric nanocomposite is competitive with the best inorganic semiconductors (e.g., bismuth telluride) at room temperature and can be applied as a coating to any flexible surface (e.g., fibers in clothing). For the first time, there is a real opportunity to harness waste heat from unconventional sources, such as body heat, to power devices in an environmentally‐friendly way.  相似文献   

9.
Solar‐driven interfacial vaporization by localizing solar‐thermal energy conversion to the air–water interface has attracted tremendous attention due to its high conversion efficiency for water purification, desalination, energy generation, etc. However, ineffective integration of hybrid solar thermal devices and poor material compliance undermine extensive solar energy exploitation and practical outdoor use. Herein, a 3D organic bucky sponge that has a combination of desired chemical and physical properties, i.e., broadband light absorbing, heat insulative, and shape‐conforming abilities that render efficient photothermic vaporization and energy generation with improved operational durability is reported. The highly compressible and readily reconfigurable solar absorber sponge not only places less constraints on footprint and shape defined fabrication process but more importantly remarkably improves the solar‐to‐vapor conversion efficiency. Notably, synergetic coupling of solar‐steam and solar‐electricity technologies is realized without trade‐offs, highlighting the practical consideration toward more impactful solar heat exploitation. Such solar distillation and low‐grade heat‐to‐electricity generation functions can provide potential opportunities for fresh water and electricity supply in off‐grid or remote areas.  相似文献   

10.
Thermoelectric (TE) technology enables the efficient conversion of waste heat generated in homes, transport, and industry into promptly accessible electrical energy. Such technology is thus finding increasing applications given the focus on alternative sources of energy. However, the synthesis of TE materials relies on costly and scarce elements, which are also environmentally damaging to extract. Moreover, spent TE modules lead to a waste of resources and cause severe pollution. To address these issues, many laboratory studies have explored the synthesis of TE materials using wastes and the recovery of scarce elements from spent modules, e.g., utilization of Si slurry as starting materials, development of biodegradable TE papers, and bacterial recovery and recycling of tellurium from spent TE modules. Yet, the outcomes of such work have not triggered sustainable industrial practices to the extent needed. This paper provides a systematic overview of the state of the art with a view to uncovering the opportunities and challenges for expanded application. Based on this overview, it explores a framework for synthesizing TE materials from waste sources with efficiencies comparable to those made from raw materials.  相似文献   

11.
Microbial growth is an exothermic process. Biotechnological industries produce large amounts of heat, usually considered an undesirable by-product. In this work, we report the construction and characterization of the first microbial thermoelectric cell (MTC), in which the metabolic heat produced by a thermally insulated microbial culture is partially converted into electricity through a thermoelectric device optimized for low ΔT values. A temperature of 41°C and net electric voltage of around 250–600 mV was achieved with 1.7 L baker’s yeast culture. This is the first time microbial metabolic energy has been converted into electricity with an ad hoc thermoelectric device. These results might contribute towards developing a novel strategy to harvest excess heat in the biotechnology industry, in processes such as ethanol fermentation, auto thermal aerobic digestion (ATAD) or bioremediation, which could be coupled with MTCs in a single unit to produce electricity as a valuable by-product of the primary biotechnological product. Additionally, we propose that small portable MTCs could be conceived and inoculated with suitable thermophilic of hyperthermophilic starter cultures and used for powering small electric devices.  相似文献   

12.
13.
14.
Advanced thermoelectric technologies can drastically improve energy efficiencies of industrial infrastructures, solar cells, automobiles, aircrafts, etc. When a thermoelectric device is used as a solid‐state heat pump and/or as a power generator, its efficiency depends pivotally on three fundamental transport properties of materials, namely, the thermal conductivity, electrical conductivity, and thermopower. The development of advanced thermoelectric materials is very challenging because these transport properties are interrelated. This paper reviews the physical mechanisms that have led to recent material advances. Progresses in both inorganic and organic materials are summarized. While the majority of the contemporary effort has been focused on lowering the lattice thermal conductivity, the latest development in nanocomposites suggests that properly engineered interfaces are crucial for realizing the energy filtering effect and improving the power factor. We expect that the nanocomposite approach could be the focus of future materials breakthroughs.  相似文献   

15.
16.
Bismuth telluride based thermoelectric materials have been commercialized for a wide range of applications in power generation and refrigeration. However, the poor machinability and susceptibility to brittle fracturing of commercial ingots often impose significant limitations on the manufacturing process and durability of thermoelectric devices. In this study, melt spinning combined with a plasma‐activated sintering (MS‐PAS) method is employed for commercial p‐type zone‐melted (ZM) ingots of Bi0.5Sb1.5Te3. This fast synthesis approach achieves hierarchical structures and in‐situ nanoscale precipitates, resulting in the simultaneous improvement of the thermoelectric performance and the mechanical properties. Benefitting from a strong suppression of the lattice thermal conductivity, a peak ZT of 1.22 is achieved at 340 K in MS‐PAS synthesized structures, representing about a 40% enhancement over that of ZM ingots. Moreover, MS‐PAS specimens with hierarchical structures exhibit superior machinability and mechanical properties with an almost 30% enhancement in their fracture toughness, combined with an eightfold and a factor of six increase in the compressive and flexural strength, respectively. Accompanied by an excellent thermal stability up to 200 °C for the MS‐PAS synthesized samples, the MS‐PAS technique demonstrates great potential for mass production and large‐scale applications of Bi2Te3 related thermoelectrics.  相似文献   

17.
18.
A new calorimetric sensor has been developed which employs a thin-film thermopile in association with an immobilized enzyme. The thermopile detects the minute temperature rise that occurs when a specific chemical substrate is catalyzed by the enzyme. A prototype sensor is described which generates an equivalent proportional voltage response to glucose concentrations present in either buffer solution or blood. These sensors have remained useful for up to 18 days when operated intermittently for measuring glucose in buffer solutions, or for up to 4 days when operated continuously. When implanted inside cardiovascular shunts on anesthetized dogs, the sensors responded appropriately to changes in the blood glucose concentration.  相似文献   

19.
Plasma Physics Reports - Results of experiments on a linear facility with a helicon plasma source operating at a frequency of 13.56 MHz and a power of up to 15 kW are reported. In the experiments,...  相似文献   

20.
Due to the urgency of our energy and environmental issues, a variety of cost‐effective and pollution‐free technologies have attracted considerable attention, among which thermoelectric technology has made enormous progress. Substantial numbers of new thermoelectric materials are created with high figure of merit (ZT) by using advanced nanoscience and nanotechnology. This is especially true in the case of metal‐chalcogenide‐based materials, which possess both relatively high ZT and low cost among all the different kinds of thermoelectric materials. Here, comprehensive coverage of recent advances in metal chalcogenides and their correlated thermoelectric enhancement mechanisms are provided. Several new strategies are summarized with the hope that they can inspire further enhancement of performance, both in metal chalcogenides and in other materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号