首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
Carvacrol is a terpene compound with various biological activities. However, few studies have specifically focused on its insecticidal activity and mechanism of carvacrol. The larvae of Lymantria dispar are seriously harmful herbivorous insect. This study measured the antifeedant, growth-inhibitory, and toxic effects of carvacrol on L. dispar larvae. To further clarify the insecticidal mechanism of carvacrol, the effects of carvacrol on detoxifying enzymes, antioxidative enzymes, digestive enzyme activities, and the mRNA expression of the above-mentioned enzyme genes were investigated. The results of the study showed that the median lethal concentration (LC50) and the sublethal concentration (LC20) of carvacrol were 1.120 mg/mL and 0.297 mg/mL, respectively, at 72 h. After LC20 treatment of L. dispar larvae for 72 h, food intake and weight gain were significantly lower compared with the control. Enzyme activity assays showed that carvacrol significantly inhibited the activities of carboxylesterase (CarE), glutathione S-transferase (GST), and acetylcholinesterase (AchE), and the inhibition rate of AchE activity was highest (66.51%). Carvacrol also activated the activities of superoxide dismutase (SOD) and catalase (CAT), while it inhibited the activities of lipase (LIP) and amylase (AMS), and first inhibited and then activated protease. In addition, qRT-PCR tests showed that carvacrol affected the mRNA expression levels of CarE, GST, AchE, SOD, CAT, LIP, AMS, and protease. This study helps to clarify the insecticidal mechanism of carvacrol on L. dispar larvae.  相似文献   

2.
阿维菌素对小菜蛾的抗性选育及其对解毒酶活性的影响   总被引:1,自引:0,他引:1  
用阿维菌素对小菜蛾Plutella xylostella (L.)进行了抗性选育,并对选育过程中小菜蛾解毒酶的活性进行了研究。选育从F0至F21代,抗性缓慢波动上升,达到选育前的122.91倍;F21至F27代,抗性迅速增长,达到选育前的812.73倍,抗性发展趋势呈现S型曲线。随着选育代数的增加,对乙酰胆碱酯酶(AChE)没有明显的影响;羧酸酯酶(CarE)活性,F27是F0的1.5倍,从F22开始,活性在较高水平上波动;谷胱甘肽转移酶(GST)活性F27是F0的2.2倍,且从F18开始,活性在较高水平上波动。选育的抗性品系,增效醚对阿维菌素增效6.34倍。  相似文献   

3.
Methyl jasmonate (MeJA)‐mediated defense in conventional cotton, Gossypium hirsutum L. (Malvaceae), against cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was investigated with respect to the activities of the detoxification enzymes acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione S‐transferases (GST) in pupae as well as the performance of larvae. The results suggested that exogenous application of MeJA to cotton leaves depressed the activities of AChE, CarE, and GST of cotton bollworm pupae. Both the absolute and protein‐specific AChE activities of pupae were depressed at all three MeJA concentrations applied as compared with a control, and the effects of 0.4 mM MeJA were significantly higher than those of 0.1 and 0.2 mM. A marked reduction in absolute CarE activity was observed at the 0.4 mM MeJA treatment, whereas the protein‐specific activity was increased by 0.2 and 0.4 mM. Absolute GST activity was significantly depressed only by the 0.4 mM MeJA treatment, whereas protein‐specific GST activity was not markedly affected by MeJA. Protein content of pupae was reduced by 0.4 mM MeJA‐induced defense in cotton leaves. The development time of larvae was protracted and pupal weight was reduced by 0.1 and 0.4 mM MeJA‐treated cotton leaves. Larval weight gain was inhibited significantly on 0.2 and 0.4 mM MeJA‐treated cotton leaves. The results suggested that MeJA‐induced plant defense may have adverse effects on H. armigera. In addition to the inhibition of growth and development, induced defense may also impair the insect's ability to detoxify toxic plant secondary metabolites.  相似文献   

4.
The antifeedant and insecticidal activities of sixteen quassinoids against 3rd instar larvae of the diamondback moth (Plutella xylostella) were compared with those of known insect antifeedant chlordimeform (1), and the structure-activity relationship was discussed. The insecticidal activity of quassin (2) was higher than that of 1, although its antifeedant activity was nearly the same as that of the reference compound.  相似文献   

5.
The control program of codling moth (Cydia pomonella L.) in the Río Negro and Neuquén Valley is intended to neonate larvae. However, adults may be subjected to sublethal pesticide concentrations generating stress which might enhance both mutation rates and activity of the detoxification system. This study assessed the exposure effects of chlorpyrifos on target enzyme and, both detoxifying and antioxidant systems of surviving adults from both a laboratory susceptible strain (LSS) and a field population (FP). The results showed that the FP was as susceptible to chlorpyrifos as the LSS and, both exhibited a similar chlorpyrifos‐inhibitory concentration 50 (IC50) of acetylcholinesterase (AChE). The FP displayed higher carboxylesterase (CarE) and 7‐ethoxycoumarine O‐deethylase (ECOD) activities than LSS. Both LSS and FP showed an increase on CarE activity after the exposure to low‐chlorpyrifos concentrations, followed by enzyme inhibition at higher concentrations. There were no significant differences neither in the activities of glutathione S‐transferases (GST), catalase (CAT) and superoxide dismutase (SOD) nor in the reduced glutathione (GSH) content between LSS and FP. Moreover, these enzymes were unaffected by chlorpyrifos. In conclusion, control adults from the FP exhibited higher CarE and ECOD activities than control adults from the LSS. AChE and CarE activities were the most affected by chlorpyrifos. Control strategies used for C. pomonella, such as rotations of insecticides with different modes of action, will probably delay the evolution of insecticide resistance in FPs from the study area.  相似文献   

6.
Chironomids are a globally distributed family of insects that can serve as biological indicators of environmental pollution. Substituted benzenes are a group of serious environmental pollutants and severely threaten biological and human health. In order to investigate potential stress biomarkers of substituted benzenes, the effects of 4-chlorophenol and p-phenylene diamine on superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), acid phosphatase (ACP) and alkaline phosphatase (ALP) activities of 4th-instar larval Propsilocerus akamusi were investigated. During 48 h exposure to 4-chlorophenol and p-phenylene diamine, the larval CAT, SOD, GST and CarE activities responded to 4-chlorophenol and p-phenylene diamine in a concentration-and time-dependent way. The ACP and ALP activities of larval P. akamusi responded slowly to 4-chlorophenol and p-phenylene diamine, and only the ALP activities were inhibited significantly under the exposure to p-phenylene diamine for 6 and 24 h. These results suggest that CAT, SOD, GST and CarE activities of chironomids can be used as potential stress biomarkers to monitor 4-chlorophenol and p-phenylene diamine pollution.  相似文献   

7.
高希武  梁同庭 《昆虫学报》1993,36(2):167-171
在一定时间内,刚特拉津 (Atrazinc)对棉铃虫 Heliothis armigera 幼虫羧酸酯酶以及GSH-S-转移酶(GST)活性有明显的诱导作用,羧酸酯酶活性最高增加146%,GST增加280%。 对羧酸酯酶的诱导高峰时间要落后于GST,不同施药剂量的诱导高峰时间以及导增加的量也不相同。 敌敌畏对家蝇Musca domestica vicina GST活性没有明显的诱导作用,阿特拉津对家蝇GST活性也没有产生诱导作用。  相似文献   

8.
《Journal of Asia》2022,25(2):101870
Due to their specificity to target insects and low toxicity to non-target organisms, insect growth regulators (IGRs) have been promising alternatives to neurotoxic insecticides. Actinobacteria produce a wide range of secondary metabolites with insecticidal and insect growth regulatory activities. In this study, the culture media of 25 actinobacteria isolates showing high juvenile hormone antagonist (JHAN) activity were assessed for their insecticidal activity to identify novel IGR compounds toxic to Plutella xylostella. Among them, four isolates exhibited high insecticidal activity against 3rd instar larvae of P. xylostella. Two isolates of IMBL-1412 and IMBL-1823 showing relatively high insecticidal activities (greater than90% mortality) were identified as Streptomyces lactacystinicus based on colony color on various International Streptomyces Project (ISP) media and nucleotide sequences of the 16S rRNA gene. The ethyl acetate fractions of both isolates showed high JHAN and insecticidal activities against P. xylostella larvae at a concentration of 100 ppm when the culture media of these two isolates were extracted sequentially using hexane, ethyl acetate, and butyl alcohol. These results suggested that secondary metabolites of these actinobacterial isolates could be efficiently applied to develop novel IGR insecticides for the control of P. xylostella.  相似文献   

9.
脱氧鬼臼毒素对粘虫几种代谢酶系的影响   总被引:5,自引:0,他引:5  
脱氧鬼臼毒素是砂地柏Sabina vulgaris Ant.中的主要杀虫活性成分之一。为探讨其作用机理,以叶碟饲喂法处理粘虫Mythimna separata Walker 4龄幼虫,测定了饲喂处理12h、24 h、36 h、48 h和72 h后试虫的羧酸酯酶(CarE)、酸性磷酸酯酶(ACP)、碱性磷酸酯酶(AKP)、谷胱甘肽S-转移酶(GSTs)和多功能氧化酶(MFO)的活性。结果表明:脱氧鬼臼毒素对粘虫羧酸酯酶的活性无明显影响;对酸性磷酸酯酶具有明显的抑制作用,且随着处理时间的延长,抑制作用增强;对碱性磷酸酯酶的影响较为复杂,表现为先抑制,后有所恢复,再被抑制的变化过程;对谷胱甘肽S-转移酶处理12 h后活性变化不明显,24 h后被抑制,36 h后逐渐激活,与对照差异极显著;对细胞色素P450酶系的O-脱甲基酶活性具有明显的抑制作用。  相似文献   

10.
在昆虫与植物漫长的相互作用中,植物合成多种抗虫物质并采用防御信号转导系统抵御昆虫,昆虫也具有多种解毒酶系统保护其免受植物毒素的毒害.本文研究了人工添加大豆胰蛋白酶抑制剂和植物防御信号物质对斜纹夜蛾幼虫羧酸酯酶和谷胱甘肽-S-转移酶活性的影响.结果表明:持续6代自幼虫2龄或3龄开始喂养含有大豆胰蛋白酶抑制剂的人工饲料,其5龄幼虫中肠和脂肪体内羧酸酯酶、谷胱甘肽-S-转移酶活性显著升高,2、3龄处理的继代幼虫中肠和脂肪体内羧酸酯酶活性均在第二代达到最大值,分别为对照的2.06、2.40倍和1.96、2.70倍;其谷胱甘肽-S-转移酶活性则分别于第4、2代达到最大值,分别为对照的7.03、11.58倍和5.71、3.60倍,并呈现先升高再降低的趋势.预先接触外源信号物质茉莉酸甲酯、水杨酸甲酯48 h和添加大豆胰蛋白酶抑制剂均可使斜纹夜蛾幼虫中肠、脂肪体内羧酸酯酶和谷胱甘肽-S-转移酶的活性显著升高,且预先接触茉莉酸甲酯和水杨酸甲酯48 h可减缓大豆胰蛋白酶抑制剂对幼虫中肠和脂肪体内羧酸酯酶、谷胱甘肽-S-转移酶活性的作用效果.  相似文献   

11.
在昆虫与植物漫长的相互作用中,植物合成多种抗虫物质并采用防御信号转导系统抵御昆虫,昆虫也具有多种解毒酶系统保护其免受植物毒素的毒害.本文研究了人工添加大豆胰蛋白酶抑制剂和植物防御信号物质对斜纹夜蛾幼虫羧酸酯酶和谷胱甘肽-S-转移酶活性的影响.结果表明: 持续6代自幼虫2龄或3龄开始喂养含有大豆胰蛋白酶抑制剂的人工饲料,其5龄幼虫中肠和脂肪体内羧酸酯酶、谷胱甘肽-S-转移酶活性显著升高,2、3龄处理的继代幼虫中肠和脂肪体内羧酸酯酶活性均在第二代达到最大值,分别为对照的2.06、2.40倍和1.96、2.70倍;其谷胱甘肽-S-转移酶活性则分别于第4、2代达到最大值,分别为对照的7.03、11.58倍和5.71、3.60倍,并呈现先升高再降低的趋势.预先接触外源信号物质茉莉酸甲酯、水杨酸甲酯48 h和添加大豆胰蛋白酶抑制剂均可使斜纹夜蛾幼虫中肠、脂肪体内羧酸酯酶和谷胱甘肽-S-转移酶的活性显著升高,且预先接触茉莉酸甲酯和水杨酸甲酯48 h可减缓大豆胰蛋白酶抑制剂对幼虫中肠和脂肪体内羧酸酯酶、谷胱甘肽-S-转移酶活性的作用效果.  相似文献   

12.
The ecological implications on biological control of insecticidal transgenic plants, which produce crystal (Cry) proteins from the soil bacterium Bacillus thuringiensis (Bt), remain a contentious issue and affect risk assessment decisions. In this study, we used a unique system of resistant insects, Bt plants and a parasitoid to critically evaluate this issue. The effects of broccoli type (normal or expressing Cry1Ac protein) and insect genotype (susceptible or Cry1Ac-resistant) of Plutella xylostella L. (Lepidoptera: Plutellidae) were examined for their effects on the development and host foraging behavior of the parasitoid, Diadegma insulare (Cresson) (Hymenoptera: Ichneumonidae) over two generations. Parasitism rate and development of D. insulare were not significantly different when different genotypes (Bt-resistant or susceptible) of insect host larvae fed on non-Bt broccoli plants. D. insulare could not discriminate between resistant and susceptible genotypes of P. xylostella, nor between Bt and normal broccoli plants with different genotypes of P. xylostella feeding on them. No D. insulare could emerge from Bt broccoli-fed susceptible and heterozygous P. xylostella larvae because these larvae were unable to survive on Bt broccoli. The parasitism rate, developmental period, pupal and adult weights of D. insulare that had developed on Bt broccoli-fed Cry1Ac-resistant P. xylostella larvae were not significantly different from those that developed on non-Bt broccoli-fed larvae. Female D. insulare emerged from Cry1Ac-resistant P. xylostella that fed on Bt plants could successfully parasitize P. xylostella larvae. The life parameters of the subsequent generation of D. insulare from P. xylostella reared on Bt broccoli were not significantly different from those from non-Bt broccoli. The Cry1Ac protein was detected in P. xylostella and in D. insulare when hosts fed on Bt broccoli. These results are the first to indicate that Cry1Ac did not harm the development or host acceptance of an important endoparasitoid after two generations of exposure. We suggest that using other Bt crops and resistant insect species would likely lead to similar conclusions about the safety of the presently used Bt proteins on parasitoids.  相似文献   

13.
豆薯种子中的杀虫成分及其毒力测定   总被引:3,自引:0,他引:3  
为明确豆薯Pachyrrhizus erosus (L.) Urban种子中的杀虫成分及其杀虫毒力,以白纹伊蚊Aedes albopictus 4龄幼虫为目标昆虫,在活性跟踪的基础上,通过多种色谱技术和核磁共振技术分离鉴定其化学成分结构,并通过浸渍法、点滴、夹毒叶碟法等测定各化合物对白纹伊蚊幼虫、棉蚜Aphis gossypii无翅成蚜、甘薯天蛾Herse convolvuli幼虫和小菜蛾Plutella xylostella幼虫的杀虫活性和作用方式。结果表明,从豆薯种子中共分离、鉴定了14个化合物,即12a-hydoxyrotenone,pachyrrhizine,12a-hydoxypachyrrhizone,12α-dehydropachyrrizone,α-naphthoflavone,7-methoxyflavanone,12α-hydroxydolineone,6-methoxyflavone,4′-hydoxyflavanone,quercetin dihydate,5-methoxyflavone,7-hydroxyflavone,3′-hydoxyflavanone和3-hydroxyflavone。上述化合物中的前7个化合物对白纹伊蚊4龄幼虫具有毒杀活性, 处理24 h的LC50分别是25.0,51.1,196.2,48.4,98.9,107.2 和15.6 mg/L;前6个化合物对棉蚜成虫24 h 的毒力分别为1.5,10.9,80.7,8,32.1和112.8 mg/L;前5个化合物以及12α-hydroxydolineone对甘薯天蛾3龄幼虫有毒杀活性;12α-hydoxyrotenone对3龄小菜蛾幼虫24 h的胃毒毒力LD50为17.3 μg/头,7-methoxyflavanone对该虫仅表现出较弱的生长发育抑制活性。首次从豆薯种子中分离得9个化合物,即6-methoxyflavone,4′-hydoxyflavanone,quercetin dihydate,α-naphthoflavone,7-methoxyflavanone,5-methoxyflavone,7-hydroxyflavone,3′-hydoxyflavanone和3-hydroxyflavone;豆薯种子含有7个活性成分,其作用方式因目标昆虫不同而不同,其主要杀虫成分不是鱼藤酮而是12α-羟基鱼藤酮。  相似文献   

14.
Cameraria ohridella is an invasive leaf miner, a severe pest of horse chestnut trees. Chemical control needs recognition of intrinsic metabolic capability to cope with external stressing factors. Our tasks were to check annual effects of generation, and host tree age on detoxifying abilities of the last larval stage. Activities of CAT, SOD, GSTPX, GST CarE and AChE were assayed in the midgut of larvae from two localities during 3 years and three generations, annually. Activities of GSTPX and GST were high, but CAT and SOD were low in relation to other lepidopteran larvae. In general, the second generation larvae had the highest activity, indicating an effective defence against allelochemicals produced by the host. Effects of host tree age were significant for SOD, GSTPX and CarE activities. Significant annual differences on enzyme profiles of CAT, SOD, CarE and AChE reflected differences of temperature and precipitation between consecutive years.  相似文献   

15.
Trypsin Modulating Oostatic Factor (TMOF) is a decapeptide hormone that inhibits the biosynthesis of digestive enzymes in the mosquito midgut. The hormone inhibits food digestion and ultimately leads to starvation and death. It has been used as a biological insecticide to control mosquitoes. In an attempt to increase the insecticidal activity of TMOF, a combination of CryIC (δ‐endotoxin from Bacillus thuringiensis) and TMOF was determined. Eight recombinant proteins fused with GST (glutathione‐S‐transferase) were expressed in Escherichia coli cells. Their insecticidal activities were determined against Culex pipiens and Spodoptera littoralis larvae. Purified GST‐TMOF and its analogue GST‐YDPAS exhibited a moderate toxicity on C. pipiens larvae with LC50 of 145.9 and 339.9 μg/mL, respectively. Unexpectedly, no mortality was observed in first instar larvae of S. littoralis. Puirified GST‐TMOF and GST‐YDPAS together with Bt toxin showed a synergistic toxic effect on both Culex and Spodoptera larvae. In the presence of 100 μg/mL GST‐TMOF and GST‐YDPAS, the median lethal concentration of entomocidus on culex larvae decreased from 52.1 to 16.7 and 31.9 μg/mL, respectively. Likewise, GST‐TMOF and GST‐YDPAS incorporated with 0.07 μg/cm2 of enotmocidus showed insecticidal activity against S. littoralis with LC50 of 16.4 and 21.9 μg/cm2. The E. coli lysates containing GST‐CryIC and its 3′‐truncated version showed low toxicity against the lepidopteran insect (10.8 and 16.6 μg/cm2) compared to 0.15 μg/cm2 of the native crystalline form of CryIC. Similarly, the mosquitocidal activity of the recombinant Bt toxins was low.  相似文献   

16.
Plutella xylostella (P. xylostella) is a highly migratory, cosmopolitan species and one of the most important pest of cruciferous crops worldwide. Pyridalyl as a novel class of insecticides has good efficacy against P. xylostella. On the basis of the commercial insecticide pyridalyl, a series of new aryloxy dihalopropene derivatives were designed and synthesized by using Intermediate Derivatization Methods. Their chemical structures were confirmed by 1H NMR, high-resolution mass spectrum (HRMS), and single-crystal X-ray diffraction analysis. The insecticidal activities of the new compounds against P. xylostella were evaluated. The results of bioassays indicated that most of the compounds showed moderate to high activities at the tested concentration, especially compounds 10e and 10g displayed more than 75% insecticidal activity against P. xylostella at 6.25 mg/L, while pyridalyl showed 50% insecticidal activity at the same concentration. The field trials result of the insecticidal activities showed that compound 10e as a 10% emulsifiable concentrate (EC) was effective in the control of P. xylostella at 75–150 g a.i./ha, and the mortality of P. xylostella for treatment with compound 10e at 75 g a.i./ha was equivalent to pyridalyl at 105 g a.i./ha.  相似文献   

17.
寄主抗药性对菜蛾绒茧蜂抗药性发展的影响   总被引:1,自引:4,他引:1  
室内筛选小菜蛾中抗品系(SRP)、高抗品系(RP)、以敏感小菜蛾幼虫(SP)为寄主的菜蛾绒茧蜂SRC品系和以SRP幼虫为寄主的菜蛾绒茧蜂RSC品系对氰戊菊酯的抗性。分别筛选了13、14、14和13代。小菜蛾SRP和RP品系分别获得了68.9和605.8倍的抗性,菜蛾绒茧蜂SRC和RSC品系分别获得了4.3和11.0倍的抗性。上述结果表明通过施药于体内有寄生蜂的小菜蛾幼虫筛选寄生蜂抗性,可以获得具有抗性的寄生蜂。以SRP为寄主的RSC品系的抗性水平高于以SP为寄主的SRC品系的抗性水平,表明和抗性较高的寄主同步筛选,寄生蜂的抗性发展更快。小菜蛾SP、SRP和RP三个品系幼虫的多功能氧化酶(MFO)活性比为1∶1.15∶1.50;菜蛾绒茧蜂SC、SRC和RSC三个品系幼虫的MFO活性比为1∶1.10∶1.49,成蜂的MFO活性比为1∶1.18∶1.54;而每种昆虫不同品系的羧酸酯酶(CarE)、总酯酶(Es)活性水平与其抗性水平变化不一致,表明抗性与MFO活性升高有关,而与CarE和Es的活性无关。  相似文献   

18.
【目的】明确氯虫苯甲酰胺对沟金针虫Pleonomus canaliculatus亚致死效应的生理生化机制,阐明氯虫苯甲酰胺低致死剂量对沟金针虫食物利用、能量物质含量以及体内消化酶、保护酶和解毒酶活力的影响。【方法】室内采用土壤混药法测定氯虫苯甲酰胺对沟金针虫3龄幼虫毒力,并测定了氯虫苯甲酰胺LC10, LC25和LC40低致死剂量对沟金针虫3龄幼虫营养指标和体内能量物质含量的影响;采用酶动力学法检测了氯虫苯甲酰胺低致死剂量处理1, 6, 12, 24, 48和72 h后沟金针虫3龄幼虫体内消化酶(蛋白酶、α-淀粉酶、脂肪酶、海藻糖酶)、保护酶(CAT, POD和SOD)以及解毒酶(CarE, MFO和GST)活力的动态变化。【结果】氯虫苯甲酰胺对沟金针虫3龄幼虫有较高毒力,其LC50值为1.2397 mg/kg。LC10和LC40剂量氯虫苯甲酰胺处理沟金针虫3龄幼虫后,平均相对生长率(MRGR)和近似消化率(AD)显著降低,严重干扰其对食物的利用;LC10, LC25和LC40剂量处理后沟金针虫3龄幼虫体内主要的能量物质(蛋白质、脂质、碳水化合物、海藻糖)含量和消化酶活力均明显降低,而解毒酶和保护酶活力显著增加,最终延缓其生长发育。【结论】氯虫苯甲酰胺对沟金针虫幼虫具有很高的杀虫活性,低致死剂量氯虫苯甲酰胺处理沟金针虫幼虫后,通过抑制消化酶活性,使其对食物的利用能力降低和生长发育延缓,以及诱导解毒酶和保护酶活性来阻止外界毒物侵害。研究结果为阐明氯虫苯甲酰胺对沟金针虫的亚致死效应机制及作用机理提供了一定的理论基础。  相似文献   

19.
Abstract Xenorhabdus nematophila, a Gram‐negative proteobacterium belonging to the family Enterobacteriaceae and associated symbiotically with soil entomopathogenic nematodes, Steinernema carpocapsae, is pathogenic to a wide range of insects. A protein complex with insecticidal activity was isolated from the cells of X. nematophila HB310 strain using methods of salting out and native polyacrylamide gel electrophoresis (PAGE). Seven polypeptides ranging 50~250 kDa were well separated from the protein complex (named Xnpt) by sodium dodecyl sulfate (SDS)‐PAGE, five of which are identified as XptA2, xptC1, XptB1, GroEL and hypothetical protein by matrix‐assisted laser desorption‐time‐of‐flight mass spectrometry (MALDI‐TOFMS). Xnpt showed high oral virulence to larvae of diamondback moth (DBM), Plutella xylostella L. (Lepidoptera, Plutellidae) as its median lethal concentration (LC50) against second and third instar larvae were 331.45 ng/mL and 553.59 ng/mL at 72 h, respectively. The histological analysis of Xnpt‐fed DBM larvae showed extensive histopathological effects on the midgut. Biochemical analysis indicated that Xnpt markedly inhibited the activities of three important enzymes in the midgut. Overall, our data showed that the protein complex isolated from X. nematophila HB310 induced the antifeedant and death of insects by destroying midgut tissues and inhibiting midgut proteases activities.  相似文献   

20.
Insecticidal and antifeeding activities against Plutella xylostella were observed using whole‐plant‐derived Perilla frutescens material. The active ingredient in P. frutescens was identified by spectroscopic analysis as the sesquiterpenoid α‐farnesene, which showed insecticidal activity against third‐instar larva of P. xylostella in a leaf‐dipping bioassay based on 24‐h LD50 values (LD50 = 53.7 ppm). The feeding inhibition rate of α‐farnesene was 82.98% against P. xylostella at 10 ppm, and the antifeeding responses were determined using an oscilloscope to detect electrophysiological responses. The electrophysiological responses of the medial styloconic sensillum (MSS) were approximately 7‐fold more sensitive at 100 ppm than those of the lateral styloconic sensillum (LSS). These results suggest that the insecticidal and antifeeding effect of α‐farnesene, which is a P. frutescens‐derived material, can be used as a potential control agent for P. xylostella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号