首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient and selective earth‐abundant catalysts are highly desirable to drive the electrochemical conversion of CO2 into value‐added chemicals. In this work, a low‐cost Sn modified N‐doped carbon nanofiber hybrid catalyst is developed for switchable CO2 electroreduction in aqueous medium via a straightforward electrospinning technique coupled with a pyrolysis process. The electrocatalytic performance can be tuned by the structure of Sn species on the N‐doped carbon nanofibers. Sn nanoparticles drive efficient formate formation with a high current density of 11 mA cm?2 and a faradaic efficiency of 62% at a moderate overpotential of 690 mV. Atomically dispersed Sn species promote conversion of CO2 to CO with a high faradaic efficiency of 91% at a low overpotential of 490 mV. The interaction between Sn species and pyridinic‐N may play an important role in tuning the catalytic activity and selectivity of these two materials.  相似文献   

2.
The ability to deposit conformal catalytic thin films enables opportunities to achieve complex nanostructured designs for catalysis. Atomic layer deposition (ALD) is capable of creating conformal thin films over complex substrates. Here, ALD‐MnOx on glassy carbon is investigated as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest due to their many applications in alternative energy technologies. The films are characterized by X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, ellipsometry, and cyclic voltammetry. The as‐deposited films consist of Mn(II)O, which is shown to be a poor catalyst for the ORR, but highly active for the OER. By controllably annealing the samples, Mn2O3 catalysts with good activity for both the ORR and OER are synthesized. Hypotheses are presented to explain the large difference in the activity between the MnO and Mn2O3 catalysts for the ORR, but similar activity for the OER, including the effects of surface oxidation under experimental conditions. These catalysts synthesized though ALD compare favorably to the best MnOx catalysts in the literature, demonstrating a viable way to produce highly active, conformal thin films from earth‐abundant materials for the ORR and the OER.  相似文献   

3.
The catalyst layer of the cathode is arguably the most critical component of low‐temperature fuel cells and carbon dioxide (CO2) electrolysis cells because their performance is typically limited by slow oxygen (O2) and CO2 reduction kinetics. While significant efforts have focused on developing cathode catalysts with improved activity and stability, fewer efforts have focused on engineering the catalyst layer structure to maximize catalyst utilization and overall electrode and system performance. Here, we study the performance of cathodes for O2 reduction and CO2 reduction as a function of three common catalyst layer preparation methods: hand‐painting, air‐brushing, and screen‐printing. We employed ex‐situ X‐ray micro‐computed tomography (MicroCT) to visualize the catalyst layer structure and established data processing procedures to quantify catalyst uniformity. By coupling structural analysis with in‐situ electrochemical characterization, we directly correlate variation in catalyst layer morphology to electrode performance. MicroCT and SEM analyses indicate that, as expected, more uniform catalyst distribution and less particle agglomeration, lead to better performance. Most importantly, the analyses reported here allow for the observed differences over a large geometric volume as a function of preparation methods to be quantified and explained for the first time. Depositing catalyst layers via a fully‐automated air‐brushing method led to a 56% improvement in fuel cell performance and a significant reduction in electrode‐to‐electrode variability. Furthermore, air‐brushing catalyst layers for CO2 reduction led to a 3‐fold increase in partial CO current density and enhanced product selectivity (94% CO) at similar cathode potential but a 10‐fold decrease in catalyst loading as compared to previous reports.  相似文献   

4.
Electrochemical reduction of carbon dioxide (CO2) to fuels and value‐added industrial chemicals is a promising strategy for keeping a healthy balance between energy supply and net carbon emissions. Here, the facile transformation of residual Ni particle catalysts in carbon nanotubes into thermally stable single Ni atoms with a possible NiN3 moiety is reported, surrounded with a porous N‐doped carbon sheath through a one‐step nanoconfined pyrolysis strategy. These structural changes are confirmed by X‐ray absorption fine structure analysis and density functional theory (DFT) calculations. The dispersed Ni single atoms facilitate highly efficient electrocatalytic CO2 reduction at low overpotentials to yield CO, providing a CO faradaic efficiency exceeding 90%, turnover frequency approaching 12 000 h?1, and metal mass activity reaching about 10 600 mA mg?1, outperforming current state‐of‐the‐art single atom catalysts for CO2 reduction to CO. DFT calculations suggest that the Ni@N3 (pyrrolic) site favors *COOH formation with lower free energy than Ni@N4, in addition to exothermic CO desorption, hence enhancing electrocatalytic CO2 conversion. This finding provides a simple, scalable, and promising route for the preparation of low‐cost, abundant, and highly active single atom catalysts, benefiting future practical CO2 electrolysis.  相似文献   

5.
Renewable‐electricity‐powered electrocatalytic CO2 reduction reactions (CO2RR) have been identified as an emerging technology to address the issue of rising CO2 emissions in the atmosphere. While the CO2RR has been demonstrated to be technically feasible, further improvements in catalyst performance through active sites engineering are a prerequisite to accelerate its commercial feasibility for utilization in large CO2‐emitting industrial sources. Over the years, the improved understanding of the interaction of CO2 with the active sites has allowed superior catalyst design and subsequent attainment of prominent CO2RR activity in literature. This review tracks the evolution of the understanding of CO2RR active sites on different electrocatalysts such as metals, metal‐oxides, single atoms, metal‐carbon, and subsequently metal‐free carbon‐based catalysts. Despite the tremendous research efforts in the field, many scientific questions on the role of various active sites in governing CO2RR activity, selectivity, stability, and pathways are still unanswered. These gaps in knowledge are highlighted and a discussion is set forth on the merits of utilizing advanced in‐situ and operando characterization techniques and machine learning (ML). Using this technique, the underlying mechanisms can be discerned, and as a result new strategies for designing active sites may be uncovered. Finally, this review advocates an interdisciplinary approach to discover and design CO2RR active sites (rather than focusing merely on catalyst activity) in a bid to stimulate practical research for industrial application.  相似文献   

6.
In this study, scalable, flame spray synthesis is utilized to develop defective ZnO nanomaterials for the concurrent generation of H2 and CO during electrochemical CO2 reduction reactions (CO2RR). The designed ZnO achieves an H2/CO ratio of ≈1 with a large current density (j) of 40 mA cm?2 during long‐term continuous reaction at a cell voltage of 2.6 V. Through in situ atomic pair distribution function analysis, the remarkable stability of these ZnO structures is explored, addressing the knowledge gap in understanding the dynamics of oxide catalysts during CO2RR. Through optimization of synthesis conditions, ZnO facets are modulated which are shown to affect reaction selectivity, in agreement with theoretical calculations. These findings and insights on synthetic manipulation of active sites in defective metal‐oxides can be used as guidelines to develop active catalysts for syngas production for renewable power‐to‐X to generate a range of fuels and chemicals.  相似文献   

7.
Conversion of CO2 to energy‐rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar‐driven CO2 reduction process based on earth‐abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO2 saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH ≈ 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO2 to CO with solar‐to‐fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS2 cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost‐effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.  相似文献   

8.
An Si photoelectrode with a nanoporous Au thin film for highly selective and efficient photoelectrochemical (PEC) CO2 reduction reaction (CO2RR) is presented. The nanoporous Au thin film is formed by electrochemical reduction of an anodized Au thin film. The electrochemical treatments of the Au thin film critically improve CO2 reduction catalytic activity of Au catalysts and exhibit CO Faradaic efficiency of 96% at 480 mV of overpotential. To apply the electrochemical pretreatment of Au films for PEC CO2RR, a new Si photoelectrode design with mesh‐type co‐catalysts independently wired at the front and the back of the photoelectrode is demonstrated. Due to the superior CO2RR activity of the nanoporous Au mesh and high photovoltage from Si, the Si photoelectrode with the nanoporous Au thin film mesh shows conversion of CO2 to CO with 91% Faradaic efficiency at positive potential than the CO2/CO equilibrium potential.  相似文献   

9.
10.
Electrochemical reduction of CO2 provides an opportunity to reach a carbon‐neutral energy recycling regime, in which CO2 emissions from fuel use are collected and converted back to fuels. The reduction of CO2 to CO is the first step toward the synthesis of more complex carbon‐based fuels and chemicals. Therefore, understanding this step is crucial for the development of high‐performance electrocatalyst for CO2 conversion to higher order products such as hydrocarbons. Here, atomic iron dispersed on nitrogen‐doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO2 reduction to CO. Fe/NG has a low reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen‐confined atomic Fe moieties on the nitrogen‐doped graphene layer is confirmed by aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. The CO2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N4) embedded in nitrogen‐doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.  相似文献   

11.
Efficient CO2 utilization is key to limit global climate change. Carbon monoxide, which is a crucial feedstock for chemical synthesis, can be produced by splitting CO2. However, existing thermochemical routes are energy intensive requiring high operating temperatures. A hybrid redox process (HRP) involving CO2‐to‐CO conversion using a lattice oxygen‐deprived redox catalyst at relatively low temperatures (<700 °C) is reported. The lattice oxygen of the redox catalyst, restored during CO2‐splitting, is subsequently used to convert methane to syngas. Operated at temperatures significantly lower than a number of industrial waste heat sources, this cyclic redox process allows for efficient waste heat‐utilization to convert CO2. To enable the low temperature operation, lanthanum modified ceria (1:1 Ce:La) promoted by rhodium (0.5 wt%) is reported as an effective redox catalyst. Near‐complete CO2 conversion with a syngas yield of up to 83% at low temperatures is achieved using Rh‐promoted LaCeO4?x. While La improves low‐temperature bulk redox properties of ceria, Rh considerably enhances the surface catalytic properties for methane activation. Density functional theory calculations further illustrate the underlying functions of La‐substitution. The highly effective redox catalyst and HRP scheme provide a potentially attractive route for chemical production using CO2, industrial waste heat, and methane, with appreciably lowered CO2 emissions.  相似文献   

12.
CO2 reduction using molecular catalysts is a key area of study for achieving electrical‐to‐chemical energy storage and feedstock chemical synthesis. Compared to classical metallic solid‐state catalysts, these molecular catalysts often result in high performance and selectivity, even under unfavorable aqueous environments. This review considers the recent state‐of‐the‐art molecular catalysts for CO2 electroreduction and explains the observed performance, therefore guiding the design principles for the next generation of molecules and material/molecule hybrid electrodes. The most recent advances related to these issues are discussed.  相似文献   

13.
Earth‐abundant Sn/Cu catalysts are highly selective for the electrocatalytic reduction of CO2 to CO in aqueous electrolytes. However, CO2 mass transport limitations, resulting from the low solubility of CO2 in water, so far limit the CO partial current density for Sn/Cu catalysts to about 10 mA cm?2. Here, a freestanding gas diffusion electrode design based on Sn‐decorated Cu‐coated electrospun polyvinylidene fluoride nanofibers is demonstrated. The use of gaseous CO2 as a feedstock alleviates mass transport limitations, resulting in high CO partial current densities above 100 mA cm?2, while maintaining high CO faradaic efficiencies above 80%. These results represent an important step toward an economically viable pathway to CO2 reduction.  相似文献   

14.
Catalytic CO2 reforming of CH4 (CRM) to produce syngas (H2 and CO) provides a promising approach to reducing global CO2 emissions and the extensive utilization of natural gas resources. However, the rapid deactivation of the reported catalysts due to severe carbon deposition at high reaction temperatures and the large energy consumption of the process hinder its industrial application. Here, a method for almost completely preventing carbon deposition is reported by modifying the surface of Ni nanocrystals with silica clusters. The obtained catalyst exhibits excellent durability for CRM with almost no carbon deposition and deactivation after reaction for 700 h. Very importantly, it is found that CRM on the catalyst can be driven by focused solar light, thus providing a promising new approach to the conversion of renewable solar energy to fuel due to the highly endothermic characteristics of CRM. The reaction yields high production rates of H2 and CO (17.1 and 19.9 mmol min?1 g?1, respectively) with a very high solar‐to‐fuel efficiency (η, 12.5%). Even under focused IR irradiation with a wavelength above 830 nm, the η of the catalyst remains as high as 3.1%. The highly efficient catalytic activity arises from the efficient solar‐light‐driven thermocatalytic CRM enhanced by a novel photoactivation effect.  相似文献   

15.
The global atmospheric CO2 concentration reached 147% of pre‐industrial levels in 2019, and is still increasing with an accelerated rate. A series of methods have been developed to convert CO2 to other non‐greenhouse molecules. Elelctrocatalytic CO2 reduction reaction (CO2RR) is one of the promising methods, since it could support renewable energy. Optimizing the CO2RR system requires finding highly efficient catalysts, as well as electrolysis systems. In this essay, the development of promising heterogeneous catalysts with well‐defined active metal sites is discussed. These catalysts could be prepared by immobilizing metal cations onto chemically well‐defined substrates, such as metal‐organic frameworks, covalent‐organic frameworks, polyoxometalates, or immobilizing well‐defined molecular catalysts on conducting substrates. A clear perspective on the catalyst's structures contributes to the understanding of structure‐reactivity correlations, which could, in turn, shed light on designing better catalysts. Some methods to assist the electrocatalysis process, such as coupling with solar or heat energy, are also briefly discussed.  相似文献   

16.
Electrochemical CO2 reduction (CO2RR) is a promising technology to produce value‐added fuels and weaken the greenhouse effect. Plenty of efforts are devoted to exploring high‐efficiency electrocatalysts to tackle the issues that show poor intrinsic activity, low selectivity for target products, and short‐lived durability. Herein, density functional theory calculations are firstly utilized to demonstrate guidelines for design principles of electrocatalyst, maximum exposure of catalytic active sites for MoS2 edges, and electron transfer from N‐doped carbon (NC) to MoS2 edges. Based on the guidelines, a hierarchical hollow electrocatalyst comprised of edge‐exposed 2H MoS2 hybridized with NC for CO2RR is constructed. In situ atomic‐scale observation for catalyst growth is performed by using a specialized Si/SiNx nanochip at a continuous temperature‐rise period, which reveals the growth mechanism. Abundant exposed edges of MoS2 provide a large quantity of active centers, which leads to a low onset potential of ≈40 mV and a remarkable CO production rate of 34.31 mA cm?2 with 92.68% of Faradaic efficiency at an overpotential of 590 mV. The long‐term stability shows negligible degradation for more than 24 h. This work provides fascinating insights into the construction of catalysts for efficient CO2RR.  相似文献   

17.
Catalytic CO2 hydrogenation to CH4 provides a promising approach to producing natural gas, and reducing the emissions of global CO2. However, the efficiency of catalytic CO2 methanation is limited by slow kinetics at low temperatures. This study first demonstrates that an air‐ and water‐stable perovskite oxyhydride BaTiO2.4H0.6 could function as an active support material for Ni‐, Ru‐based catalysts for CO2 methanation at 300–350 °C, a relatively lower temperature. With the oxyhydride support, the activity for Ni and Ru increases by a factor of 2–7 when compared to the BaTiO3 oxide support. Kinetic analysis shows reduced H2 poisoning probably due to spillover, implying that the activity change is due to the kinetics being influenced by hydride. Furthermore, the oxyhydride‐supported Ni catalyst is also durable with its catalytic performance preserved for at least 10 h under a humid environment at elevated temperatures. It is anticipated that these perovskite oxyhydrides will shed new light on the design of high‐efficiency metal‐based catalysts for water‐involved catalytic reactions.  相似文献   

18.
This study analyzed the net carbon dioxide (CO2) emission reductions between 2005 and 2050 by using wood for energy under various scenarios of forest management and energy conversion technology in Japan, considering both CO2 emission reductions from replacement of fossil fuels and changes in carbon storage in forests. According to our model, wood production for energy results in a significant reduction of carbon storage levels in forests (by 46% to 77% in 2050 from the 2005 level). Thus, the net CO2 emission reduction when wood is used for energy becomes drastically smaller. Conventional tree production for energy increases net CO2 emissions relative to preserving forests, but fast‐growing tree production may reduce net CO2 emissions more than preserving forests does. When wood from fast‐growing trees is used to generate electricity with gas turbines, displacing natural gas, the net CO2 emission reduction from the combination of fast‐growing trees and electricity generation with gas turbines is about 58% of the CO2 emission reduction from electricity generation from gas turbines alone in 2050, and an energy conversion efficiency of around 20% or more is required to obtain net reductions over the entire period until 2050. When wood is used to produce bioethanol, displacing gasoline, net reductions are realized after 2030, provided that heat energy is recovered from residues from ethanol production. These results show the importance of considering the change in carbon storage when estimating the net CO2 emission reduction effect of the wood use for energy.  相似文献   

19.
Rational design of electrocatalysts toward efficient CO2 electroreduction has the potential to reduce carbon emission and produce value‐added chemicals. In this work, a strategy of constructing 2D confined‐space as molecular reactors for enhanced electrocatalytic CO2 reduction selectivity is demonstrated. Highly ordered 2D nanosheet lamella assemblies are achieved via weak molecular interaction of atomically thin titania nanosheets, a variety of cationic surfactants, and SnO2 nanoparticles. The interlayer spacings can be tuned from 0.9 to 3.0 nm by using different surfactant molecules. These 2D assemblies of confined‐space catalysts exhibit a strong size dependence of CO2 electroreduction selectivity, with a peak Faradaic efficiency of 73% for formate production and excellent electrochemical stability at an optimal interspacing of ≈2.0 nm. This work suggests great potential for constructing new molecular‐size reactors, for highly selective electrocatalytic CO2 reduction.  相似文献   

20.
An artificial photosynthesis system based on N‐doped ZnTe nanorods decorated with an N‐doped carbon electrocatalyst layer is fabricated via an all‐solution process for the selective conversion of CO2 to CO. Substitutional N‐doping into the ZnTe lattice decreases the bandgap slightly and improves the charge transfer characteristics, leading to enhanced photoelectrochemical activity. Remarkable N‐doping effects are also demonstrated by the N‐doped carbon layer that promotes selective CO2‐to‐CO conversion instead of undesired water‐to‐H2 reduction by providing active sites for CO2 adsorption and activation, even in the absence of metallic redox centers. The photocathode shows promising performance in photocurrent generation (?1.21 mA cm?2 at ?0.11 VRHE), CO selectivity (dominant CO production of ≈72%), minor H2 reduction (≈20%), and stability (corrosion suppression). The metal‐free electrocatalyst/photocatalyst combination prepared via a cost‐effective solution process exhibits high performance due to synergistic effects between them, and thus may find application in practical solar fuel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号