首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A new insertion sequence (IS), IS1405, was isolated and characterized from a Ralstonia solanacearum race 1 strain by the method of insertional inactivation of the sacB gene. Sequence analysis indicated that the IS is closely related to the members of IS5 family, but the extent of nucleotide sequence identity in 5' and 3' noncoding regions between IS1405 and other members of IS5 family is only 23 to 31%. Nucleotide sequences of these regions were used to design specific oligonucleotide primers for detection of race 1 strains by PCR. The PCR amplified a specific DNA fragment for all R. solanacearum race 1 strains tested, and no amplification was observed with some other plant-pathogenic bacteria. Analysis of nucleotide sequences flanking IS1405 and additional five endogenous IS1405s that reside in the chromosome of R. solanacearum race 1 strains indicated that IS1405 prefers a target site of CTAR and has two different insertional orientations with respect to this target site. Restriction fragment length polymorphism (RFLP) pattern analysis using IS1405 as a probe revealed extensive genetic variation among strains of R. solanacearum race 1 isolated from eight different host plants in Taiwan. The RFLP patterns were then used to subdivide the race 1 strains into two groups and several subgroups, which allowed for tracking different subgroup strains of R. solanacearum through a host plant community. Furthermore, specific insertion sites of IS1405 in certain subgroups were used as a genetic marker to develop subgroup-specific primers for detection of R. solanacearum, and thus, the subgroup strains can be easily identified through a rapid PCR assay rather than RFLP analysis.  相似文献   

2.
Ralstonia solanacearum is the causative agent of bacterial wilt in many important crops. A specific and sensitive PCR detection method that uses primers targeting the gene coding for the flagella subunit, fliC, was established. Based on the first fliC gene sequence of R. solanacearum strain K60 available at GenBank, the Ral_fliC PCR primer system was designed; this system yielded a single 724-bp product with the DNAs of all of the R. solanacearum strains tested. However, R. pickettii and four environmental Ralstonia isolates also yielded amplicons. The Ral_fliC PCR products obtained with 12 strains (R. solanacearum, R. pickettii, and environmental isolates) were sequenced. By sequence alignment, Rsol_fliC primers specific for R. solanacearum were designed. With this primer system, a specific 400-bp PCR product was obtained from all 82 strains of R. solanacearum tested. Six strains of R. pickettii and several closely related environmental isolates yielded no PCR product; however, a product was obtained with one Pseudomonas syzygii strain. A GC-clamped 400-bp fliC product could be separated in denaturing gradient gels and allowed us to distinguish P. syzygii from R. solanacearum. The Rsol_fliC PCR system was applied to detect R. solanacearum in soil. PCR amplification, followed by Southern blot hybridization, allowed us to detect about one target DNA molecule per PCR, which is equivalent to 103 CFU g of bulk soil−1. The system was applied to survey soils from different geographic origins for the presence of R. solanacearum.  相似文献   

3.
Class 1 integrons play a role in the emergence of multi-resistant bacteria by facilitating the recruitment of gene cassettes encoding antibiotic resistance genes. 512 E. coli strains sourced from humans (n = 202), animals (n = 304) and the environment (n = 6) were screened for the presence of the intI1 gene. In 31/79 integron positive E. coli strains, the gene cassette regions could not be PCR amplified using standard primers. DNA sequence analysis of 6 serologically diverse strains revealed atypical integrons harboured the dfrA5 cassette gene and only 24 bp of the integron 3′-conserved segment (CS) remained, due to the insertion of IS26. PCR targeting intI1 and IS26 followed by restriction fragment length polymorphism (RFLP) analysis identified the integron-dfrA5-IS26 element in 27 E. coli strains of bovine origin and 4 strains of human origin. Southern hybridization and transformation studies revealed the integron-dfrA5-IS26 gene arrangement was either chromosomally located or plasmid borne. Plasmid location in 4/9 E. coli strains and PCR linkage of Tn21 transposition genes with the intI1 gene in 20/31 strains, suggests this element is readily disseminated by horizontal transfer.  相似文献   

4.
A fluorogenic (TaqMan) PCR assay was developed to detect Ralstonia solanacearum strains. Two fluorogenic probes were utilized in a multiplex reaction; one broad-range probe (RS) detected all biovars of R. solanacearum, and a second more specific probe (B2) detected only biovar 2A. Amplification of the target was measured by the 5′ nuclease activity of Taq DNA polymerase on each probe, resulting in emission of fluorescence. TaqMan PCR was performed with DNA extracted from 42 R. solanacearum and genetically or serologically related strains to demonstrate the specificity of the assay. In pure cultures, detection of R. solanacearum to ≥102 cells ml−1 was achieved. Sensitivity decreased when TaqMan PCR was performed with inoculated potato tissue extracts, prepared by currently recommended extraction procedures. A third fluorogenic probe (COX), designed with the potato cytochrome oxidase gene sequence, was also developed for use as an internal PCR control and was shown to detect potato DNA in an RS-COX multiplex TaqMan PCR with infected potato tissue. The specificity and sensitivity of the assay, combined with high speed, robustness, reliability, and the possibility of automating the technique, offer potential advantages in routine indexing of potato tubers and other plant material for the presence of R. solanacearum.  相似文献   

5.
Insertion sequence (IS) element ISRLdTAL1145-1 from Rhizobium sp. (Leucaena diversifolia) strain TAL 1145 was entrapped in the sacB gene of the positive selection vector pUCD800 by insertional inactivation. A hybridization probe prepared from the whole 2.5-kb element was used to determine the distribution of homologous sequences in a diverse collection of 135 Rhizobium and Bradyrhizobium strains. The IS probe hybridized strongly to Southern blots of genomic DNAs from 10 rhizobial strains that nodulate both Phaseolus vulgaris (beans) and Leucaena leucocephala (leguminous trees), 1 Rhizobium sp. that nodulates Leucaena spp., 9 R. meliloti (alfalfa) strains, 4 Rhizobium spp. that nodulate Sophora chrysophylla (leguminous trees), and 1 nonnodulating bacterium associated with the nodules of Pithecellobium dulce from the Leucaena cross-inoculation group, producing distinguishing IS patterns for each strain. Hybridization analysis revealed that ISRLdTAL1145-1 was strongly homologous with and closely related to a previously isolated element, ISRm USDA1024-1 from R. meliloti, while restriction enzyme analysis found structural similarities and differences between the two IS homologs. Two internal segments of these IS elements were used to construct hybridization probes of 1.2 kb and 380 bp that delineate a structural similarity and a difference, respectively, of the two IS homologs. The internal segment probes were used to analyze the structures of homologous IS elements in other strains. Five types of structural variation in homolog IS elements were found. The predominate IS structural type naturally occurring in a strain can reasonably identify the strain's cross-inoculation group relationships. Three IS structural types were found in Rhizobium species that nodulate beans and Leucaena species, one of which included the designated type IIB strain of R. tropici (CIAT 899). Weak homology to the whole IS probe, but not with the internal segments, was found with two Bradyrhizobium japonicum strains. The taxonomic and ecological implications of the distribution of ISRLdTAL1145-1 are discussed.  相似文献   

6.
A majority of large-scale bacterial genome rearrangements involve mobile genetic elements such as insertion sequence (IS) elements. Here we report novel insertions and excisions of IS elements and recombination between homologous IS elements identified in a large collection of Escherichia coli mutation accumulation lines by analysis of whole genome shotgun sequencing data. Based on 857 identified events (758 IS insertions, 98 recombinations and 1 excision), we estimate that the rate of IS insertion is 3.5 × 10−4 insertions per genome per generation and the rate of IS homologous recombination is 4.5 × 10−5 recombinations per genome per generation. These events are mostly contributed by the IS elements IS1, IS2, IS5 and IS186. Spatial analysis of new insertions suggest that transposition is biased to proximal insertions, and the length spectrum of IS-caused deletions is largely explained by local hopping. For any of the ISs studied there is no region of the circular genome that is favored or disfavored for new insertions but there are notable hotspots for deletions. Some elements have preferences for non-coding sequence or for the beginning and end of coding regions, largely explained by target site motifs. Interestingly, transposition and deletion rates remain constant across the wild-type and 12 mutant E. coli lines, each deficient in a distinct DNA repair pathway. Finally, we characterized the target sites of four IS families, confirming previous results and characterizing a highly specific pattern at IS186 target-sites, 5′-GGGG(N6/N7)CCCC-3′. We also detected 48 long deletions not involving IS elements.  相似文献   

7.
The Clostridium perfringens enterotoxin gene is on a transposon-like element, Tn5565, integrated in the chromosome in human food poisoning strains. The flanking IS elements, IS1470 A and B, are related to IS30. The IS element found in the transposon, IS1469, is related to IS200 and has been found upstream of cpe in all Type A strains. PCR and sequencing studies from cell extracts and plasmid isolations of C. perfringens indicate that Tn5565 can form a circular form with the tandem repeat (IS1470)2, similar to the transposition intermediates described for a number of IS elements.  相似文献   

8.
From Bradyrhizobium japonicum highly reiterated sequence-possessing (HRS) strains indigenous to Niigata and Tokachi in Japan with high copy numbers of the repeated sequences RSα and RSβ (K. Minamisawa, T. Isawa, Y. Nakatsuka, and N. Ichikawa, Appl. Environ. Microbiol. 64:1845–1851, 1998), several insertion sequence (IS)-like elements were isolated by using the formation of DNA duplexes by denaturation and renaturation of total DNA, followed by treatment with S1 nuclease. Most of these sequences showed structural features of bacterial IS elements, terminal inverted repeats, and homology with known IS elements and transposase genes. HRS and non-HRS strains of B. japonicum differed markedly in the profiles obtained after hybridization with all the elements tested. In particular, HRS strains of B. japonicum contained many copies of IS1631, whereas non-HRS strains completely lacked this element. This association remained true even when many field isolates of B. japonicum were examined. Consequently, IS1631 occurrence was well correlated with B. japonicum HRS strains possessing high copy numbers of the repeated sequence RSα or RSβ. DNA sequence analysis indicated that IS1631 is 2,712 bp long. In addition, IS1631 belongs to the IS21 family, as evidenced by its two open reading frames, which encode putative proteins homologous to IstA and IstB of IS21, and its terminal inverted repeat sequences with multiple short repeats.  相似文献   

9.
The genetic diversity among a worldwide collection of 120 strains of Ralstonia solanacearum was assessed by restriction fragment length polymorphism (RFLP) analysis of amplified fragments from the hrp gene region. Five amplified fragments appeared to be specific to R. solanacearum. Fifteen different profiles were identified among the 120 bacterial strains, and a hierarchical cluster analysis distributed them into eight clusters. Each cluster included strains belonging to a single biovar, except for strains of biovars 3 and 4, which could not be separated. However, the biovar 1 strains showed rather extensive diversity since they were distributed into five clusters whereas the biovar 2 and the biovar 3 and 4 strains were gathered into one and two clusters, respectively. PCR-RFLP analysis of the hrp gene region confirmed the results of previous studies which split the species into an “Americanum” division including biovar 1 and 2 strains and an “Asiaticum” division including biovar 3 and 4 strains. However, the present study showed that most of the biovar 1 strains, originating from African countries (Reunion Island, Madagascar, Zimbabwe, and Angola) and being included in a separate cluster, belong to the “Asiaticum” rather than to the “Americanum” division. These African strains could thus have evolved separately from other biovar 1 strains originating from the Americas.  相似文献   

10.
Bacterial wilt of tomato caused by Ralstonia solanacearum (Smith) Yabuuchi et al. (Microbiol Immunol 39:897–904, 1995) is a serious disease, which causes losses up to 60 % depending on environmental conditions, soil property, and cultivars. In present investigation, nucleotide sequences of virulence, hypersensitive response and pathogenicity (hrp) gene were used to design a pair of primer (Hrp_rs 2F: 5′-AGAGGTCGACGCGATACAGT-3′ and Hrp_rs 2R: 5′-CATGAGCAAGGACGAAGTCA-3′) for amplification of bacterial genome. The genomic DNA of 27 isolates of R. solanacearum race 1 biovar 3 & 4 was amplified at 323 bp. The specificity of primer was tested on 13 strains of R. solanacearum with other group of bacteria such as Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and X. citri subsp. citri. Primer amplified DNA fragment of R. solanacearum at 323 bp. The sensitivity of the primer was 200 cfu/ml and improved further detection level by using non-specific enrichment medium casamino acids-pepton-glucose broth followed by PCR (BIO-PCR). Out of 130 samples of asymptomatic tomato plants, irrigation water, and soil collected from bacterial wilt infested field in different agro-climatic regions of India, R. solanacearum was detected from 86.9, 88.5, and 90.9 per cents samples using BIO-PCR, respectively. The primer was found specific for detecting viable and virulent strains of R. solanacearum and useful for the diagnosis of R. solanacearum in tomato seedlings and monitoring of pathogen in irrigation water and soil.  相似文献   

11.
During the past few years, Ralstonia (Pseudomonas) solanacearum race 3, biovar 2, was repeatedly found in potatoes in Western Europe. To detect this bacterium in potato tissue samples, we developed a method based on fluorescent in situ hybridization (FISH). The nearly complete genes encoding 23S rRNA of five R. solanacearum strains and one Ralstonia pickettii strain were PCR amplified, sequenced, and analyzed by sequence alignment. This resulted in the construction of an unrooted tree and supported previous conclusions based on 16S rRNA sequence comparison in which R. solanacearum strains are subdivided into two clusters. Based on the alignments, two specific probes, RSOLA and RSOLB, were designed for R. solanacearum and the closely related Ralstonia syzygii and blood disease bacterium. The specificity of the probes was demonstrated by dot blot hybridization with RNA extracted from 88 bacterial strains. Probe RSOLB was successfully applied in FISH detection with pure cultures and potato tissue samples, showing a strong fluorescent signal. Unexpectedly, probe RSOLA gave a less intense signal with target cells. Potato samples are currently screened by indirect immunofluorescence (IIF). By simultaneously applying IIF and the developed specific FISH, two independent targets for identification of R. solanacearum are combined, resulting in a rapid (1-day), accurate identification of the undesired pathogen. The significance of the method was validated by detecting the pathogen in soil and water samples and root tissue of the weed host Solanum dulcamara (bittersweet) in contaminated areas.  相似文献   

12.
We describe the first functional insertion sequence (IS) element in Lactobacillus plantarum. ISLpl1, an IS30-related element, was found on the pLp3 plasmid in strain FB335. By selection of spontaneous mutants able to grow in the presence of uracil, it was demonstrated that the IS had transposed into the uracil phosphoribosyltransferase-encoding gene upp on the FB335 chromosome. The plasmid-carried IS element was also sequenced, and a second potential IS element was found: ISLpl2, an IS150-related element adjacent to ISLpl1. When Southern hybridization was used, the copy number and genome (plasmid versus chromosome) distribution data revealed different numbers and patterns of ISLpl1-related sequences in different L. plantarum strains as well as in Pediococcus strains. The ISLpl1 pattern changed over many generations of the strain L. plantarum NCIMB 1406. This finding strongly supports our hypothesis that ISLpl1 is a mobile element in L. plantarum. Database analysis revealed five quasi-identical ISLpl1 elements in Lactobacillus, Pediococcus, and Oenococcus strains. Three of these elements may be cryptic IS, since point mutations or 1-nucleotide deletions were found in their transposase-encoding genes. In some cases, ISLpl1 was linked to genes involved in cold shock adaptation, bacteriocin production, sugar utilization, or antibiotic resistance. ISLpl1 is transferred among lactic acid bacteria (LAB) and may play a role in LAB genome plasticity and adaptation to their environment.  相似文献   

13.
Thirty-two plasmid insertion mutants were independently isolated from two strains of Xanthomonas campestris pv. campestris in Taiwan. Of the 32 mutants, 14 (44%), 8 (25%), and 4 (12%) mutants resulted from separate insertions of an IS3 family member, IS476, and two new insertion sequences (IS), IS1478 and IS1479. While IS1478 does not have significant sequence homology with any IS elements in the EMBL/GenBank/DDBJ database, IS1479 demonstrated 73% sequence homology with IS1051 in X. campestris pv. dieffenbachiae, 62% homology with IS52 in Pseudomonas syringae pv. glycinea, and 60% homology with IS5 in Escherichia coli. Based on the predicted transposase sequences as well as the terminal nucleotide sequences, IS1478 by itself constitutes a new subfamily of the widespread IS5 family, whereas IS1479, along with IS1051, IS52, and IS5, belongs to the IS5 subfamily of the IS5 family. All but one of the IS476 insertions had duplications of 4 bp at the target sites without sequence preference and were randomly distributed. An IS476 insertion carried a duplication of 952 bp at the target site. A model for generating these long direct repeats is proposed. Insertions of IS1478 and IS1479, on the other hand, were not random, and IS1478 and IS1479 each showed conservation of PyPuNTTA and PyTAPu sequences (Py is a pyrimidine, Pu is a purine, and N is any nucleotide) for duplications at the target sites. The results of Southern blot hybridization analysis indicated that multiple copies of IS476, IS1478, and IS1479 are present in the genomes of all seven X. campestris pv. campestris strains tested and several X. campestris pathovars.  相似文献   

14.
ISCR Elements: Novel Gene-Capturing Systems of the 21st Century?   总被引:9,自引:0,他引:9       下载免费PDF全文
“Common regions” (CRs), such as Orf513, are being increasingly linked to mega-antibiotic-resistant regions. While their overall nucleotide sequences show little identity to other mobile elements, amino acid alignments indicate that they possess the key motifs of IS91-like elements, which have been linked to the mobility ent plasmids in pathogenic Escherichia coli. Further inspection reveals that they possess an IS91-like origin of replication and termination sites (terIS), and therefore CRs probably transpose via a rolling-circle replication mechanism. Accordingly, in this review we have renamed CRs as ISCRs to give a more accurate reflection of their functional properties. The genetic context surrounding ISCRs indicates that they can procure 5′ sequences via misreading of the cognate terIS, i.e., “unchecked transposition.” Clinically, the most worrying aspect of ISCRs is that they are increasingly being linked with more potent examples of resistance, i.e., metallo-β-lactamases in Pseudomonas aeruginosa and co-trimoxazole resistance in Stenotrophomonas maltophilia. Furthermore, if ISCR elements do move via “unchecked RC transposition,” as has been speculated for ISCR1, then this mechanism provides antibiotic resistance genes with a highly mobile genetic vehicle that could greatly exceed the effects of previously reported mobile genetic mechanisms. It has been hypothesized that bacteria will surprise us by extending their “genetic construction kit” to procure and evince additional DNA and, therefore, antibiotic resistance genes. It appears that ISCR elements have now firmly established themselves within that regimen.  相似文献   

15.
A method for rapid detection and identification of hyperthermophilic archaea of the family Thermococcaceae based on PCR amplification of 16S rRNA gene fragments with primers TcPc 173F (5′-TCCCCCATAGGYCTGRGGTACTGGAAGGTC-3′) and TcPc 589R (5′-GCCGTGRGATTTCGCCAGGGACTTACGGGC-3′) was developed and used for identification of new isolates.  相似文献   

16.
Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5′-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.  相似文献   

17.
18.
Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Furthermore, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.  相似文献   

19.
We describe the characterization of a new insertion sequence, IS1515, identified in the genome of Streptococcus pneumoniae I41R, an unencapsulated mutant isolated many years ago (R. Austrian, H. P. Bernheimer, E. E. B. Smith, and G. T. Mills, J. Exp. Med. 110:585–602, 1959). A copy of this element located in the cap1EI41R gene was sequenced. The 871-bp-long IS1515 element possesses 12-bp perfect inverted repeats and generates a 3-bp target duplication upon insertion. The IS encodes a protein of 271 amino acid residues similar to the putative transposases of other insertion sequences, namely IS1381 from S. pneumoniae, ISL2 from Lactobacillus helveticus, IS702 from the cyanobacterium Calothrix sp. strain PCC 7601, and IS112 from Streptomyces albus G. IS1515 appears to be present in the genome of most type 1 pneumococci in a maximum of 13 copies, although it has also been found in the chromosome of pneumococcal isolates belonging to other serotypes. We have found that the unencapsulated phenotype of strain I41R is the result of both the presence of an IS1515 copy and a frameshift mutation in the cap1EI41R gene. Precise excision of the IS was observed in the type 1 encapsulated transformants isolated in experiments designed to repair the frameshift. These results reveal that IS1515 behaves quite differently from other previously described pneumococcal insertion sequences. Several copies of IS1515 were also able to excise and move to another locations in the chromosome of S. pneumoniae. To our knowledge, this is the first report of a functional IS in pneumococcus.  相似文献   

20.
IS1203v is an insertion sequence which has been found in inactivated Shiga toxin 2 genes of Escherichia coli O157:H7. We analyzed the transpositional mechanism of IS1203v in order to investigate whether the Shiga toxin 2 genes inactivated by IS1203v could revert to the wild type. When the transposase activity of IS1203v was enhanced by artificial frameshifting, IS1203v was obviously excised from the Shiga toxin 2 gene in a circular form. The IS1203v circle consisted of the entire IS1203v, but an extra 3-bp sequence (ATC) intervened between the 5′ and 3′ ends of IS1203v. The extra 3-bp sequence was identical to a direct repeat which was probably generated upon insertion. Moreover, we detected the Shiga toxin 2 gene with a precise excision of IS1203v. In the wild-type situation, the transposition products of IS1203v could be observed by PCR amplification. These results show that IS1203v can transpose in a nonreplicative manner and that the Shiga toxin gene inactivated by this insertion sequence can revert to the wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号