首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-color DNA microarrays are commonly used for the analysis of global gene expression. They provide information on relative abundance of thousands of mRNAs. However, the generated data need to be normalized to minimize systematic variations so that biologically significant differences can be more easily identified. A large number of normalization procedures have been proposed and many softwares for microarray data analysis are available. Here, we have applied two normalization methods (median and loess) from two packages of microarray data analysis softwares. They were examined using a sample data set. We found that the number of genes identified as differentially expressed varied significantly depending on the method applied. The obtained results, i.e. lists of differentially expressed genes, were consistent only when we used median normalization methods. Loess normalization implemented in the two software packages provided less coherent and for some probes even contradictory results. In general, our results provide an additional piece of evidence that the normalization method can profoundly influence final results of DNA microarray-based analysis. The impact of the normalization method depends greatly on the algorithm employed. Consequently, the normalization procedure must be carefully considered and optimized for each individual data set.  相似文献   

2.
3.
MOTIVATION: Missing values are problematic for the analysis of microarray data. Imputation methods have been compared in terms of the similarity between imputed and true values in simulation experiments and not of their influence on the final analysis. The focus has been on missing at random, while entries are missing also not at random. RESULTS: We investigate the influence of imputation on the detection of differentially expressed genes from cDNA microarray data. We apply ANOVA for microarrays and SAM and look to the differentially expressed genes that are lost because of imputation. We show that this new measure provides useful information that the traditional root mean squared error cannot capture. We also show that the type of missingness matters: imputing 5% missing not at random has the same effect as imputing 10-30% missing at random. We propose a new method for imputation (LinImp), fitting a simple linear model for each channel separately, and compare it with the widely used KNNimpute method. For 10% missing at random, KNNimpute leads to twice as many lost differentially expressed genes as LinImp. AVAILABILITY: The R package for LinImp is available at http://folk.uio.no/idasch/imp.  相似文献   

4.
Oligonucleotide microarrays are an informative tool to elucidate gene regulatory networks. In order for gene expression levels to be comparable across microarrays, normalization procedures have to be invoked. A large number of methods have been described to correct for systematic biases in microarray experiments. The performance of these methods has been tested only to a limited extend. Here, we evaluate two different types of microarray analyses: (i) the same gene in replicate samples and (ii) different, but co-expressed genes in the same sample. The reliability of the latter analysis needs to be determined for the analysis of regulatory networks and our report is the first attempt to evaluate for the accuracy of different microarray normalization methods in this respect. Consistent with previous results we observed a large effect of the normalization method on the outcome of the expression analyses. Our analyses indicate that different normalization methods should be performed depending on whether a study is aiming to detect differential gene expression between independent samples or whether co-expressed genes should be identified. We make recommendations about the most appropriate method to use.  相似文献   

5.
Evaluation of the gene-specific dye bias in cDNA microarray experiments   总被引:2,自引:0,他引:2  
MOTIVATION: In cDNA microarray experiments all samples are labeled with either Cy3 or Cy5. Systematic and gene-specific dye bias effects have been observed in dual-color experiments. In contrast to systematic effects which can be corrected by a normalization method, the gene-specific dye bias is not completely suppressed and may alter the conclusions about the differentially expressed genes. METHODS: The gene-specific dye bias is taken into account using an analysis of variance model. We propose an index, named label bias index, to measure the gene-specific dye bias. It requires at least two self-self hybridization cDNA microarrays. RESULTS: After lowess normalization we have found that the gene-specific dye bias is the major source of experimental variability between replicates. The ratio (R/G) may exceed 2. As a consequence false positive genes may be found in direct comparison without dye-swap. The stability of this artifact and its consequences on gene variance and on direct or indirect comparisons are addressed. AVAILABILITY: http://www.inapg.inra.fr/ens_rech/mathinfo/recherche/mathematique  相似文献   

6.
PURPOSE OF REVIEW: To highlight the development in microarray data analysis for the identification of differentially expressed genes, particularly via control of false discovery rate. RECENT FINDINGS: The emergence of high-throughput technology such as microarrays raises two fundamental statistical issues: multiplicity and sensitivity. We focus on the biological problem of identifying differentially expressed genes. First, multiplicity arises due to testing tens of thousands of hypotheses, rendering the standard P value meaningless. Second, known optimal single-test procedures such as the t-test perform poorly in the context of highly multiple tests. The standard approach of dealing with multiplicity is too conservative in the microarray context. The false discovery rate concept is fast becoming the key statistical assessment tool replacing the P value. We review the false discovery rate approach and argue that it is more sensible for microarray data. We also discuss some methods to take into account additional information from the microarrays to improve the false discovery rate. SUMMARY: There is growing consensus on how to analyse microarray data using the false discovery rate framework in place of the classical P value. Further research is needed on the preprocessing of the raw data, such as the normalization step and filtering, and on finding the most sensitive test procedure.  相似文献   

7.
MOTIVATION: There are two general methods for making gene-expression microarrays: one is to hybridize a single test set of labeled targets to the probe, and measure the background-subtracted intensity at each probe site; the other is to hybridize both a test and a reference set of differentially labeled targets to a single detector array, and measure the ratio of the background-subtracted intensities at each probe site. Which method is better depends on the variability in the cell system and the random factors resulting from the microarray technology. It also depends on the purpose for which the microarray is being used. Classification is a fundamental application and it is the one considered here. RESULTS: This paper describes a model-based simulation paradigm that compares the classification accuracy provided by these methods over a variety of noise types and presents the results of a study modeled on noise typical of cDNA microarray data. The model consists of four parts: (1) the measurement equation for genes in the reference state; (2) the measurement equation for genes in the test state; (3) the ratio and normalization procedure for a dual-channel system; and (4) the intensity and normalization procedure for a single-channel system. In the reference state, the mean intensities are modeled as a shifted exponential distribution, and the intensity for a particular gene is modeled via a normal distribution, Normal(I, alphaI), about its mean intensity I, with alpha being the coefficient of variation of the cell system. In the test state, some genes have their intensities up-regulated by a random factor. The model includes a number of random factors affecting intensity measurement: deposition gain d, labeling gain, and post-image-processing residual noise. The key conclusion resulting from the study is that the coefficient of variation governing the randomness of the intensities and the deposition gain are the most important factors for determining whether a single-channel or dual-channel system provides superior classification, and the decision region in the alpha-d plane is approximately linear.  相似文献   

8.
9.
Due to the great variety of preprocessing tools in two-channel expression microarray data analysis it is difficult to choose the most appropriate one for a given experimental setup. In our study, two independent two-channel inhouse microarray experiments as well as a publicly available dataset were used to investigate the influence of the selection of preprocessing methods (background correction, normalization, and duplicate spots correlation calculation) on the discovery of differentially expressed genes. Here we are showing that both the list of differentially expressed genes and the expression values of selected genes depend significantly on the preprocessing approach applied. The choice of normalization method to be used had the highest impact on the results. We propose a simple but efficient approach to increase the reliability of obtained results, where two normalization methods which are theoretically distinct from one another are used on the same dataset. Then the intersection of results, that is, the lists of differentially expressed genes, is used in order to get a more accurate estimation of the genes that were de facto differentially expressed.  相似文献   

10.
Normalizing DNA microarray data   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
13.
M T Beck  L Holle  W Y Chen 《BioTechniques》2001,31(4):782-4, 786
PCR subtraction hybridization has been used effectively to enrich and single out differentially expressed genes. However identification of these genes by means of cloning and sequencing individual cDNAs is a tedious and lengthy process. In this report, an attempt has been made to combine the use of PCR select cDNA subtraction hybridization and cDNA microarrays to identify differentially expressed genes using a nonradioactive chemiluminescent detection method. mRNA from human prolactin (hPRL) or human prolactin antagonist (hPRL-G129R) treated and non-treated breast cancer cells was isolated, and cDNAs were synthesized and used for the PCR subtraction to enrich the differentially expressed genes in the treated cells. The PCR-amplified and subtracted cDNA pools were purified and labeled using the digoxigenin method. Labeled cDNAs were hybridized to a human apoptosis cDNA microarray membrane and identified by chemiluminescence. The results suggest that the strategy of combining all three methods will allow for a more efficient, nonradioactive way of identifying differentially expressed genes in target cells.  相似文献   

14.
This study established the utility of cross-species application of the cDNA microarray technique for investigating differential gene expression. Using both total RNA and mRNA samples recovered from two opossum cell lines derived from UVB-induced melanoma, we analyzed expression of ca. 4400 genes on the human DermArray DNA microarrays. The signals generated on the DermArrays were clear, strong, and reproducible. A cDNA dot blot consisting of differentially expressed genes representative of different functional clusters was used to validate the DermArray results. We also cloned a Monodelphis gene, keratin 18 (KRT18), and characterized its expression patterns in tumor samples of different progression stages. Up-regulated expression was observed for the KRT18 gene in advanced melanomas, a finding consistent with the DermArray analysis. These results provide evidence that cross-species application of cDNA microarrays is a useful strategy for investigating gene expression patterns in animal models for which species-specific cDNA microarrays are not available.  相似文献   

15.
Do JH  Choi DK 《Molecules and cells》2006,22(3):254-261
DNA microarray is a powerful tool for high-throughput analysis of biological systems. Various computational tools have been created to facilitate the analysis of the large volume of data produced in DNA microarray experiments. Normalization is a critical step for obtaining data that are reliable and usable for subsequent analysis such as identification of differentially expressed genes and clustering. A variety of normalization methods have been proposed over the past few years, but no methods are still perfect. Various assumptions are often taken in the process of normalization. Therefore, the knowledge of underlying assumption and principle of normalization would be helpful for the correct analysis of microarray data. We present a review of normalization techniques from single-labeled platforms such as the Affymetrix GeneChip array to dual-labeled platforms like spotted array focusing on their principles and assumptions.  相似文献   

16.
MOTIVATION: Data from one-channel cDNA microarray studies may exhibit poor reproducibility due to spatial heterogeneity, non-linear array-to-array variation and problems in correcting for background. Uncorrected, these phenomena can give rise to misleading conclusions. RESULTS: Spatial heterogeneity may be corrected using two-dimensional loess smoothing (Colantuoni et al., 2002). Non-linear between-array variation may be corrected using an iterative application of one-dimensional loess smoothing. A method for background correction using a smoothing function rather than simple subtraction is described. These techniques promote within-array spatial uniformity and between-array reproducibility. Their application is illustrated using data from a study of the effects of an insulin sensitizer, rosiglitazone, on gene expression in white adipose tissue in diabetic db/db mice. They may also be useful with data from two-channel cDNA microarrays and from oligonucleotide arrays. AVAILABILITY: R functions for the methods described are available on request from the author.  相似文献   

17.
Here we present a methodology for the normalization of element signal intensities to a mean intensity calculated locally across the surface of a DNA microarray. These methods allow the detection and/or correction of spatially systematic artifacts in microarray data. These include artifacts that can be introduced during the robotic printing, hybridization, washing, or imaging of microarrays. Using array element signal intensities alone, this local mean normalization process can correct for such artifacts because they vary across the surface of the array. The local mean normalization can be usedfor quality control and data correction purposes in the analysis of microarray data. These algorithms assume that array elements are not spatially ordered with regard to sequence or biological function and require that this spatial mapping is identical between the two sets of intensities to be compared. The tool described in this report was developed in the R statistical language and is freely available on the Internet as part of a larger gene expression analysis package. This Web implementation is interactive and user-friendly and allows the easy use of the local mean normalization tool described here, without programming expertise or downloading of additional software.  相似文献   

18.
19.
We study the effects on clustering quality by different normalization and pre-clustering techniques for a novel mixed-integer nonlinear optimization-based clustering algorithm, the Global Optimum Search with Enhanced Positioning (EP_GOS_Clust). These are important issues to be addressed. DNA microarray experiments are informative tools to elucidate gene regulatory networks. But in order for gene expression levels to be comparable across microarrays, normalization procedures have to be properly undertaken. The aim of pre-clustering is to use an adequate amount of discriminatory characteristics to form rough information profiles, so that data with similar features can be pre-grouped together and outliers deemed insignificant to the clustering process can be removed. Using experimental DNA microarray data from the yeast Saccharomyces Cerevisiae, we study the merits of pre-clustering genes based on distance/correlation comparisons and symbolic representations such as {+, o, -}. As a performance metric, we look at the intra- and inter-cluster error sums, two generic but intuitive measures of clustering quality. We also use publicly available Gene Ontology resources to assess the clusters' level of biological coherence. Our analysis indicates a significant effect by normalization and pre-clustering methods on the clustering results. Hence, the outcome of this study has significance in fine-tuning the EP_GOS_Clust clustering approach.  相似文献   

20.

Background  

The quality of microarray data can seriously affect the accuracy of downstream analyses. In order to reduce variability and enhance signal reproducibility in these data, many normalization methods have been proposed and evaluated, most of which are for data obtained from cDNA microarrays and Affymetrix GeneChips. CodeLink Bioarrays are a newly emerged, single-color oligonucleotide microarray platform. To date, there are no reported studies that evaluate normalization methods for CodeLink Bioarrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号