共查询到20条相似文献,搜索用时 10 毫秒
1.
The role of p53 in treatment responses of lung cancer 总被引:11,自引:0,他引:11
Viktorsson K De Petris L Lewensohn R 《Biochemical and biophysical research communications》2005,331(3):868-880
Resistance to radio- and chemotherapy is a major problem in treatment responses of lung cancer. In this disease, biological markers, that can be predictive of response to treatment for guiding clinical practice, still need to be validated. Radiotherapy and most chemotherapeutic agents directly target DNA and in response to such therapies, p53 functions as a coordinator of the DNA repair process, cell cycle arrest, and apoptosis. In fact, it participates in the main DNA repair systems operative in cells, including NHEJ, HRR, NER, BER, and MMR. Given the high p53 mutation frequency in lung cancer which likely impairs some of the p53-mediated functions, a role of p53 as a predictive marker for treatment responses has been suggested. In this review, we summarize the conflicting results coming from preclinical and clinical studies on the role of p53 as a predictive marker of responses to chemotherapy or radiotherapy in lung cancer. 相似文献
2.
Huang Y Jin Y Yan CH Yu Y Bai J Chen F Zhao YZ Fu SB 《Molecular and cellular biochemistry》2008,309(1-2):117-123
Tumor suppressor p53 plays important roles in cell cycle regulation, apoptosis and DNA repair in different cell types including
lung cancer. There are different p53 apoptotic pathways in high and low metastatic ability lung cancer cells. However, the
exactly mechanism in the pathway is still unclear. Here we found that Annexin A2, a Ca2+-dependent phospholipid-binding protein, is involved in p53-mediated apoptosis. First, by using mRNA differential display
technique, down-regulated Annexin A2 expression was found in all cell lines transfected of Ad-p53 (adenoviral expression construct
encoding wild type p53 gene) especially in highly metastatic Anip973 lung cancer cells. Then, decreased expression of Annexin
A2 was further confirmed by Northern blot and Western blot analysis. At last, knock down of Annexin A2 by siRNA inhibited
cellular proliferation in BE1 cell line with highly metastatic ability. Taken together, our results suggested that Annexin
A2 may play roles in p53 induced apoptosis and it is also involved in regulation of cell proliferation.
The authors Yun Huang, Yan Jin and Cheng-hui Yan contributed equally to this work. 相似文献
3.
Yan J Yun H Yang Y Jing B Feng C Song-bin F 《Biochemical and biophysical research communications》2006,346(2):501-507
It has been shown that p53 induces cell apoptosis and the Bcl-2 family plays key roles in this process. However, the molecular mechanism of p53 apoptotic pathway is still unclear. Here, we show that overexpression of exogenous wild-type p53 induced apoptosis in lung cancer cells and high metastasis potential cells had a faster rate of apoptosis than low metastasis potential cells. The expression of pro-apoptotic gene BNIP3 was increased significantly both in Anip973 and 95D cell lines which have high metastasis ability, but not AGZY83-a or little increased in 95C cell lines which possess low metastasis ability. Overexpression of BNIP3 increases apoptotic rate induced by p53 in AGZY83-a cells. Blocking the expression of BNIP3 by siRNA in Anip973 cells decreased apoptotic rate mediated by p53. Taken together, these data suggest that high level expression of BNIP3 mediated rapid apoptosis that was triggered by p53 in lung cancer cells. 相似文献
4.
Tsuji K Mizumoto K Sudo H Kouyama K Ogata E Matsuoka M 《Biochemical and biophysical research communications》2002,295(3):621-629
p19(ARF) is a potent tumor suppressor. By inactivating Mdm2, p19(ARF) upregulates p53 activities to induce cell cycle arrest and sensitize cells to apoptosis in the presence of collateral signals. It has also been demonstrated that cell cycle arrest is induced by overexpressed p19(ARF) in p53-deficient mouse embryonic fibroblasts, only in the absence of the Mdm2 gene. Here, we show that apoptosis can be induced without additional apoptosis signals by expression of p19(ARF) using an adenovirus-mediated expression system in p53-intact cell lines as well as p53-deficient cell lines. Also, in primary mouse embryonic fibroblasts (MEFs) lacking p53/ARF, p53-independent apoptosis is induced irrespective of Mdm2 status by expression of p19(ARF). In agreement, p19(ARF)-mediated apoptosis in U2OS cells, but not in Saos2 cells, was attenuated by coexpression of Mdm2. We thus conclude that there is a p53-independent pathway for p19(ARF)-induced apoptosis that is insensitive to inhibition by Mdm2. 相似文献
5.
6.
Janssen A Schiffmann S Birod K Maier TJ Wobst I Geisslinger G Grösch S 《Biochemical and biophysical research communications》2008,365(4):698-703
S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53wt) or being p(HCT-116 p53−/−), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53−/− xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53wt cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53wt cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75NTR, p53 and Bax. 相似文献
7.
Lu-Zhe Pan Dae-Gyun Ahn Tanveer Sharif Derek Clements Shashi Gujar 《Cell cycle (Georgetown, Tex.)》2014,13(6):1041-1048
NAD+ metabolism plays key roles not only in energy production but also in diverse cellular physiology. Aberrant NAD+ metabolism is considered a hallmark of cancer. Recently, the tumor suppressor p53, a major player in cancer signaling pathways, has been implicated as an important regulator of cellular metabolism. This notion led us to examine whether p53 can regulate NAD+ biosynthesis in the cell. Our search resulted in the identification of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT-2), a NAD+ synthetase, as a novel downstream target gene of p53. We show that NMNAT-2 expression is induced upon DNA damage in a p53-dependent manner. Two putative p53 binding sites were identified within the human NMNAT-2 gene, and both were found to be functional in a p53-dependent manner. Furthermore, knockdown of NMNAT-2 significantly reduces cellular NAD+ levels and protects cells from p53-dependent cell death upon DNA damage, suggesting an important functional role of NMNAT-2 in p53-mediated signaling. Our demonstration that p53 modulates cellular NAD+ synthesis is congruent with p53’s emerging role as a key regulator of metabolism and related cell fate. 相似文献
8.
9.
Shaonly Samanta Viswanath Swamy D. Suresh M. Rajkumar Basabi Rana Ajay Rana Malay Chatterjee 《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2008,650(2):123-131
Previous studies have shown that dietary micronutrient vanadium can protect neoplastic development induced by chemical carcinogens. Current investigation is an attempt to evaluate the role of vanadium (4.27 μmol/l) in inhibiting 1,2 dimethyhydrazine (DMH) (20 mg/kg body weight) induced rat colon carcinogenesis. We investigated the effect of vanadium against the formation of DMH-induced O6-methylguanine (O6-Meg) DNA adduct, a potent cytotoxic and mutagenic agent for colon cancer. Supplementation of vanadium significantly reduced the hepatic (P < 0.05), and colonic (at three sequential time points; ANOVA, F = 4.96, P < 0.05) O6-Meg DNA adduct levels in rats, indicating vanadium's potency in limiting the initiation event of colon carcinogenesis. Removal of initiated and damaged precancerous cells by apoptosis can prevent tumorigenesis and further malignancy. DNA fragmentation study revealed the vanadium-mediated apoptotic induction in colon tumors. The increased value of apoptotic index (AI) (62.27%; P < 0.01) in subsequent TUNEL assay further confirmed the apoptosis induction by vanadium. This paralleled the nuclear immunoexpression of p53. A significant positive correlation between p53 immunoexpression and AI (P = 0.0026, r = 0.83, r2 = 0.69) links its association with vanadium-mediated apoptotic induction. Vanadium treatment also abated the mRNA expression of iNOS (54.03%), reflecting its protective effect against nitric oxide-mediated genotoxicity and colon tumorigenesis. These studies cumulatively provide strong evidence for the inhibitory actions of vanadium against DMH-induced genotoxicity and carcinogenesis in rat colon. 相似文献
10.
11.
Yang Sun Gay Hui Ho Heng Nung Koong Gayathri Sivaramakrishnan Wei Tzer Ang Qiu Mei Koh Valerie C.-L. Lin 《Biochemical and biophysical research communications》2013
Tripartite-motif containing 22 (TRIM22) is a direct p53 target gene and inhibits the clonogenic growth of leukemic cells. Its expression in Wilms tumors is negatively associated with disease relapse. This study addresses if TRIM22 expression is de-regulated in breast carcinoma. Western blotting analysis of a panel of 10 breast cancer cell lines and 3 non-malignant mammary epithelial cell lines with a well-characterized TRIM22 monoclonal antibody showed that TRIM22 protein is greatly under-expressed in breast cancer cells as compared to non-malignant cell lines. Similarly, TRIM22 protein is significantly down-regulated in breast tumors as compared to matched normal breast tissues. Study of cell lines with methylation inhibitor and bisulfite sequencing indicates that TRIM22 promoter hypermethylation may not be the cause for TRIM22 under-expression in breast cancer. Instead, we found that TRIM22 protein level correlates strongly (R = 0.79) with p53 protein level in normal breast tissue, but this correlation is markedly impaired (R = 0.48) in breast cancer tissue, suggesting that there is some defects in p53 regulation of TRIM22 gene in breast cancer. This notion is supported by cell line studies, which showed that TRIM22 was no longer inducible by p53-activating genotoxic drugs in breast cancer cell lines and in a p53 null cell line H1299 transfected with wild type p53. In conclusion, this study shows that TRIM22 is greatly under-expressed in breast cancer. p53 dysfunction may be one of the mechanisms for TRIM22 down-regulation. 相似文献
12.
O6-Methylguanine-DNA methyltransferase (MGMT) is a suicide enzyme that repairs the pre-mutagenic, pre-carcinogenic and pre-toxic DNA damage O6-methylguanine. It also repairs larger adducts on the O6-position of guanine, such as O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine and O6-chloroethylguanine. These adducts are formed in response to alkylating environmental pollutants, tobacco-specific carcinogens and methylating (procarbazine, dacarbazine, streptozotocine, and temozolomide) as well as chloroethylating (lomustine, nimustine, carmustine, and fotemustine) anticancer drugs. MGMT is therefore a key node in the defense against commonly found carcinogens, and a marker of resistance of normal and cancer cells exposed to alkylating therapeutics. MGMT also likely protects against therapy-related tumor formation caused by these highly mutagenic drugs. Since the amount of MGMT determines the level of repair of toxic DNA alkylation adducts, the MGMT expression level provides important information as to cancer susceptibility and the success of therapy. In this article, we describe the methods employed for detecting MGMT and review the literature with special focus on MGMT activity in normal and neoplastic tissues. The available data show that the expression of MGMT varies greatly in normal tissues and in some cases this has been related to cancer predisposition. MGMT silencing in tumors is mainly regulated epigenetically and in brain tumors this correlates with a better therapeutic response. Conversely, up-regulation of MGMT during cancer treatment limits the therapeutic response. In malignant melanoma, MGMT is not related to the therapeutic response, which is due to other mechanisms of inherent drug resistance. For most cancers, studies that relate MGMT activity to therapeutic outcome following O6-alkylating drugs are still lacking. 相似文献
13.
A unique multibranched cyclomaltooligosaccharide (cyclodextrin, CD) of 6(1),6(3),6(5)-tri-O-alpha-maltosyl-cyclomaltoheptaose [6(1),6(3),6(5)-tri-O-alpha-maltosyl-beta-cyclodextrin, (G(2))(3)-betaCD] was prepared. The physicochemical and biological properties of (G(2))(3)-betaCD were determined together with those of monobranched CDs (6-O-alpha-D-glucopyranosyl-alpha-cyclodextrin (G(1)-alphaCD), 6-O-alpha-D-glucopyranosyl-beta-cyclodextrin (G(1)-betaCD), and 6-O-alpha-maltosyl-beta-cyclodextrin (G(2)-betaCD)). NMR spectra of (G(2))(3)-betaCD were measured using various 2D NMR techniques. The solubility of (G(2))(3)-betaCD in water and MeOH-water solutions was extremely high in comparison with nonbranched betaCD and was about the same as that of the other monobranched betaCDs. The formation of an inclusion complex of (G(2))(3)-betaCD with stereoisomers (estradiol, retinoic acid, quinine, citral, and glycyrrhetinic acid) depends on the cis-trans isomers of guest compounds. The cis isomers of estradiol, retinoic acid, and glycyrrhetinic acid were included more than their trans isomers, while the trans isomers of citral and quinine fit more tightly than their cis isomers. (G(2))(3)-betaCD was the most effective host compound in the cis-trans resolution of glycyrrhetinic acid. Among the branched betaCDs, (G(2))(3)-betaCD exhibited the weakest hemolytic activity in human erythrocytes and showed negligible cytotoxicity in Caco-2 cells up to 200 microM. These results indicate unique characteristics of (G(2))(3)-betaCD in some biological responses of cultured cells. 相似文献
14.
Complete sequence of p53 gene in 20 patients with lung cancer: comparison with chemosensitivity and immunohistochemistry 总被引:2,自引:0,他引:2
Daniel Brattstr?m Michael Bergqvist Kristina Lamberg Wolfgang Kraaz Lena Scheibenflug Gunnar Gustafsson Mats Inganas Gunnar Wagenius Ola Brodin 《Cancer immunology, immunotherapy : CII》1998,15(4):255-261
In this study the entirep53 complementary DNA has been sequenced in 20 non-small cell lung carcinomas (NSCLC) and the results correlated with chemosensitivity,
immunohistochemistry and clinical data. Ten patients had mutations inp53, 8 missense mutations and 2 nonsense mutations. The method discovered two mutations never described previously and two other
mutations that have never been described before in connection with NSCLC tumours. Chemosensitivity data, according to a short-term
assay (FMCA), indicated that tumours with p53 mutation were more resistant to cisplatin and cyclophosphamide. Immunohistochemical
studied demonstrated a 70% concordance between over-expression of p53 protein and mutation inp53. No conclusions or trends could be drawn from the immunohistochemical studies ofBcl-2 andBax. 相似文献
15.
Colorectal cancer (CRC), the third most common cancer worldwide, also has the
highest rate of cancer-related morbidity and mortality. WNT signaling is
initiated by binding of WNT to various receptors, including frizzleds (FZDs),
and plays a critical role in CRC and other tumor development by regulating
proliferation, differentiation, migration, apoptosis, and polarity. Among the
members of the FZD family, FZD6 is broadly expressed in various tissues, and its
overexpression has been reported in several cancers, suggesting an important
role in cancer development. In this study, we investigated the expression of
FZD6 in patients with CRC and found it to be increased in tumors, as compared to
paired adjacent non-tumor tissues. Additionally, we found that FZD6 expression
was negatively regulated by miR199a5p in CRC cells. These results suggest that
overexpression of FZD6, mediated by reduced expression of miR-199a-5p, may play
an important role in the development of CRC. [BMB Reports 2015; 48(6):
360-366] 相似文献
16.
Lung cancer development involves multiple genetic abnormalities leading to malignant transformation of the bronchial epithelial
cells, followed by invasion and metastasis. One of the most common changes is mutation of the p53 tumor suppressor gene. The
frequency of p53 alterations in lung cancer is highest in small cell and squamous cell carcinomas. A genetic “signature” of
the type of p53 mutations has been associated with carcinogens in cigarette smoke. The majority of clinical studies suggest
that lung cancers with p53 alterations carry a worse prognosis, and may be relatively more resistant to chemotherapy and radiation.
An understanding of the role of p53 in human lung cancer may lead to more rational targeted approaches for treating this disease.
P53 gene replacement is currently under clinical investigation but clearly more effective means of gene deliver to the tumor
cells are required. Novel approaches to lung cancer therapy are needed to improve the observed poor patient survival despite
current therapies. 相似文献
17.
M E Fiori C Barbini T L Haas N Marroncelli M Patrizii M Biffoni R De Maria 《Cell death and differentiation》2014,21(5):774-782
Lung cancer is the leading cause of tumor-related death. The lack of effective treatments urges the development of new therapeutic approaches able to selectively kill cancer cells. The connection between aberrant microRNA (miRNA – miR) expression and tumor progression suggests a new strategy to fight cancer by interfering with miRNA function. In this regard, LNAs (locked nucleic acids) have proven to be very promising candidates for miRNA neutralization. Here, we employed an LNA-based anti-miR library in a functional screening to identify putative oncogenic miRNAs in non-small-cell lung cancer (NSCLC). By screening NIH-H460 and A549 cells, miR-197 was identified as a new functional oncomiR, whose downregulation induces p53-dependent lung cancer cell apoptosis and impairs the capacity to establish tumor xenografts in immunodeficient mice. We further identified the two BH3-only proteins NOXA and BMF as new miR-197 targets responsible for induction of apoptosis in p53 wild-type cells, delineating miR-197 as a key survival factor in NSCLC. Thus, we propose the inhibition of miR-197 as a novel therapeutic approach against lung cancer. 相似文献
18.
The biogenic engineered silver nanoparticles (AgNPs) were synthesized using aqueous extract of marine mangrove Avicennia marina leaves and its anticancer activity was checked in lung cancer cell line. Initially, the UV–vis spectra exhibited the characteristics SPR absorption peak for AgNPs at 425 nm and further characterized using TEM, SAED, XRD and FT-IR analysis. The TEM pictures displayed the spherical crystalline and monodispersed nature of AgNPs and the size range observed between 25–30 nm. The SAED showed the AgNPs are face-centered cubic pattern which is further confirmed with XRD analysis. The FTIR spectral analysis exposed the presence of necessary biomolecules for the reduction and stabilization of silver ions. Synthesized AgNPs showed dose-dependent cytotoxic activity in A549 cell line. The fluorescence studies showed that AgNPs induces apoptosis by increasing the generation of ROS in mitochondria and cleaving the mitochondrial membrane of A549 cells. Further, the molecular studies were conducted using RT-PCR and western blotting analysis and the results confirmed that the AgNPs induce apoptosis through both p53-dependent and -independent caspase intermediated signaling pathway. Together, the present study concludes that the bioengineered AgNPs can act as a potential therapeutic agent against lung cancer. 相似文献
19.
20.
Down-regulation of let-7 microRNA (miRNA) is a key event in lung cancer. Despite recent advances in survival signaling, the roles of let-7 in the context of lung cancer are not fully clear. In this study, we showed that let-7a, a member of let-7 family, negatively regulated the expression of NIRF through NIRF 3′ UTR. We also showed that NIRF was required for the let-7a-mediated elevation of p21WAF1. These findings suggest that growth-inhibitory effect of let-7a on the A549 cells in vitro and in vivo may be explained in part by le-7a-induced suppression of NIRF and elevation of p21WAF1. This work reveals a novel regulatory mechanism for let-7a in the control of cellular proliferation and lung carcinogenesis. 相似文献