首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytoplankton <4-3 µm in diameter, or autotrophic picoplankton,can constitute the majority of the biomass and productivityof photosynthetic organisms in marine and freshwater systems.Indirect evidence has indicated that mortality of autotrophicpicoplankton occurs principally at night in the open ocean,but continuously in coastal water. The predominant view of thefate of autotrophic picoplankton production in the ocean isthat they are consumed by heterotrophic nanoflagellates. A possiblemechanism to explain these observations is that grazing of heterotrophicnanoflagellates on autotrophic picoplankton is inhibited byultraviolet radiation (W), at least in clear open-ocean environments.A series of laboratory experiments was conducted to examinethe effects of UV radiation on the grazing impact of two heterotrophicnanoflagellates on Synechococcus spp., a commonly occurringgenus of autotrophic picoplankton. The two nanoflagellates usedwere Paraphysomonas bandaieensis and Paraphysomonas imperforata.For both nanoflagellates, there was an inverse relationshipbetween the grazing mortality of Synechococcus and UV irradiance.The grazing mortality of Synechococcus was reduced less withP.imperforata than with P.bandaiensis. In some experiments,the effect of UV on the grazing impact of the nanoflagellatepopulations was caused in part by UV-related reductions in nanoflagellatesurvival. However, UV reduced the grazing impact of nanoflagellatesprimarily by reducing the rates of consumption of Synechococcusby individual nanoflagellates, to a degree directly relatedto UV irradiance. The results suggat that UV radiation may bean important selection factor in clear open-ocean water, andthat in order to predict the effect of increasing UV radiationon marine microbial plankton communities, we must consider interactionsbetween trophic levels as well as effects on single trophiclevels.  相似文献   

2.
Seasonal abundance as total biomass and specific densities ofthe main herbivorous zooplankton (>60 µm) in hypertrophicHartbeespoort Dam from 1981 to 1983 are described. After springzooplankton biomass maxima each year there followed a mid-summerdecline in the Daphnia population and a shift to a smaller bodiedcladoceran community dominated by Ceriodaphnia concomitant witha change from largely edible phytoplankton species to abundantcolonial Microcystis. In situ community grazing rates were measuredthroughout 1983 using a 14C-labelled unicellular alga. Integratedcommunity grazing rates measured in the aerobic water columnwere highest in December (260.2%/day) when Daphnia was abundantand the edible component of the phytoplankton was diminishing.Lowest integrated community grazing rates occurred in January–February(19.8–35.3%/day) and July (28.3%/day) when the phytoplanktonwas composed almost entirely of Microcysris, and Ceriodaphniadominated the zooplankton community whilst food availabilitywas low. Feeding in Ceriodaphnia was not hindered by abundantlarge Microcysris colonies; total biomass specific grazing ratewas high when Ceriodaphnia dominated and low when Daphnia dominatedthe zoo-plankton community. Results indicate that in hypertrophicconditions it is unlikely that large filter-feeders such asDaphnia are able to retard or limit the development of Cyanophyceaeblooms by high grazing pressure.  相似文献   

3.
Colony forming and toxic cyanobacteria form a problem in surfacewaters of shallow lakes, both for recreation and wildlife. Zebramussels, Dreissena polymorpha, have been employed to help torestore shallow lakes in the Netherlands, dominated by cyanobacteria,to their former clear state. Zebra mussels have been presentin these lakes since they were created in the 19th century bythe excavation of peat and are usually not considered to bean invasive species. Most grazing experiments using Dreissenahave been performed with uni-cellular phytoplankton laboratorystrains and information on grazing of larger phytoplankton taxahardly exists. To gain more insight in to whether D. polymorphais indeed able to decrease cyanobacteria in the phytoplankton,we therefore performed grazing experiments with zebra musselsand two species of cyanobacteria, that greatly differ in shape:colony forming strains of Microcystis aeruginosa and the filamentousspecies Planktothrix agardhii. For both species a toxic anda non-toxic strain was selected. We found that zebra musselscleared toxic Planktothrix at a higher rate than non-toxic Planktothrix,toxic or non-toxic Microcystis. Clearance rates between theother strains were not significantly different. Both phytoplanktonspecies, regardless of toxicity, size and shape, were foundin equal amounts (based on chlorophyll concentrations) in theexcreted products of the mussels (pseudofaeces). The resultsshow that zebra mussels are capable of removing colonial andfilamentous cyanobacteria from the water, regardless of whetherthe cyanobacteria are toxic or not. This implies that the musselsmay be used as a biofilter for the removal of harmful cyanobacterialblooms in shallow (Dutch) lakes where the mussels are alreadypresent and not a nuisance. Providing more suitable substratefor zebra mussel attachment may lead to appropriate mussel densitiescapable of filtering large quantities of cyanobacteria.  相似文献   

4.
Can phaeopigments be used as markers for Daphnia grazing in Lake Constance?   总被引:1,自引:0,他引:1  
The formation of chlorophyll a degradation products was measuredwith natural phytoplankton from Lake Constance and Daphnia magnaand native Daphnia as grazers in grazing experiments duringspring bloom conditions using high-pressure liquid chromatography(HPLC). Chlorophyll a start concentrations were between 1.2and 16.3 µg l–1; phaeopigment weights constituted5% of chlorophyll a weight. Only phaeophorbide a was a markerfor Daphnia grazing; concentrations of other phaeopigments (phaeophytina, chlorophyllide a and two unidentified phaeopigments) didnot increase during Daphnia grazing. Conversion efficiencies(chlorophyll a to phaeophorbide a) were between 0 and 43% ona weight basis, and between 0 and 65% on a molar basis. Conversionefficiencies were highest at high grazer density (40 Daphnial–1) and after a 24 h exposure time. Grazing by microzooplanktonprobably led to the formation of the two unidentified phaeopigments.In Lake Constance, Daphnia density was significantly positivelycorrelated with the phaeophorbide a/chlorophyll a ratio whenit was <5000 Daphnia m–3. However, when higher Daphniadensities were included in calculations, then Daphnia densitywas positively, but insignificantly, correlated with the phaeophorbidea/chlorophyll a ratio. This suggests that when the level offood per Daphnia is low, then grazing is more efficient withless production of phaeophorbide a and a higher production ofcolourless products.  相似文献   

5.
We tested the hypothesis that grazing on bacteria would varybetween lakes with differing plankton community structures.Paul and Tuesday lakes (Gogebic County, MI) are respectivelydominated by piscivorous and planktivorous fish. Consequently,zooplankton in Paul are primarily large daphnids, while zooplanktonin Tuesday are primarily small cladocerans and copepods. Wemeasured flagellate grazing on bacteria using a fluorescentminicell method, while cladoceran grazing was estimated fromthe relationship between body length and filtering rate. Wepredicted that cladoceran grazing on bacteria would be higherin Paul, and flagellate grazing would be higher in Tuesday.Cladoceran grazing on bacteria was important in both lakes contraryto our initial expectation. Large populations of the small cladoceran,Bosmina longirostris, in Tuesday exerted a grazing pressure(0.18–35x106 bacteria 1–1 h–1) approximatelyequal to that of the large cladoceran, Daphnia pulex, in Paul(0.34–30x106 bacteria 1–1 h–1). Flagellategrazing was higher in Tuesday as predicted (range: Paul, 0.1–6x106bacteria 1–1 h–1; Tuesday, 0.2–20x106 bacteria1–1 h–1). However, there was not a simple relationshipbetween total abundance of flagellates and total grazing rates.High community grazing by flagellates occurred when attachedchoanoflagellates were present. These flagellates had higheringestion rates than free forms. We find no clear evidence thatdifferences in food-web structure between the two lakes influencethe process of grazing on bacteria. Instead, our results emphasizethe significance of cladocerans and attached flagellates asconsumers of bacteria in freshwater ecosystems.  相似文献   

6.
Zooplankton-phytoplankton interactions in a eutrophic lake   总被引:3,自引:0,他引:3  
Enclosure experiments were made in a cyanobacteria dominatedlake (Lake Rotongaio) to assess the impact of zooplankton (>150µm) grazing on algal growth rates and determine the effectof diel and vertical changes in zooplankton grazing intensityand nutrient (NH4-N) regeneration upon abundance of phytoplankton.The filamentous cyanobacterium Anabaena minutissima var. attenuataand diatom Cyclotella meneghiniana showed a negative linearchange in abundance with a gradient in zooplankton grazing intensity.Phytoflagellates were not grazed and showed a positive linearchange in abundance with increasing zooplankton biomass. Theseeffects, as well as shortening of filament length of Anabaena,were caused by raptorial feeding by the alanoid copepod Boeckellapropinqua which dominated the zooplankton. Phytoplankton growthwas not stimulated by addition of nutrients, suggesting nutrientregeneration was not important. Diel and vertical changes infeeding and NH4-N regeneration rates were measured in Marchand June 1988. Diel differences were more pronounced in Marchwhen the water column was stratified. Specific feeding rateswere more important than vertical changes in zooplankton biomassin determining community grazing rates in March, but in Junewhen the water column was mixed, vertical distribution of zooplanktonbiomass was important. Zooplankton grazing was an importantloss process for phytoplankton in the lower part of the epilimnionin Lake Rotongaio.  相似文献   

7.
The elemental composition and growth rate of Rhodomonas andheterotrophic bacteria were studied in batch cultures in thepresence and absence of Daphnia and at two different levelsof phosphorus limitation. The elemental content of single cellswas measured with X-ray microanalysis. Simultaneously, dilutionexperiments were performed in order to estimate grazing losses,growth rates and dominant nutrient sources for bacteria andRhodomonas. The phosphorus:carbon (P:C) ratios of the bacteriawere generally higher in the experiment with the stronger Plimitation of the system. High P:C ratios were taken as an indicationthat bacteria were carbon limited. The presence of Daphnia resultedin a further increase in bacterial P:C ratios and increasedspecific growth rates. Thus, grazing increased the availabilityboth of inorganic nutrients and organic substrates, stimulatingthe growth of the bacteria. P:C ratios of Rhodomonas decreasedwith increasing P limitation of the system. Only at strong Plimitation did the presence of Daphnia result in increased P:Cratios of Rhodomonas compared with the control without daphnids.This study shows that the elemental content and growth rateof heterotrophic bacteria and Rhodomonas are influenced by grazingand nutrient regeneration by daphnids. The response is dynamicand depends on the level of nutrient limitation of the system. Present address: Department of Microbiology, University of BergenJahnebakken 5, NO-5020 Bergen, Norway  相似文献   

8.
Using numerical techniques, we explored the dynamics of a one-dimensional,six-component nutrient–phytoplankton–zooplankton(NPZ) model in which zooplankton grazed on a mixed prey field.Five alternative functional forms were implemented to describezooplankton grazing, and the form for predation on mesozooplanktonwas prescribed by a product of a specific predation rate (h)and the mesozooplankton concentration raised to a power (q),which we varied between one and two. With all five grazing functions,Hopf bifurcations, where the form of the solution transitionedbetween steady equilibrium and periodic limit cycles, persistedacross the qh parameter space. Regardless of the valuesof h and q, with some forms of the grazing function, we wereunable to find steady equilibrium solutions that simultaneouslycomprised non-zero concentrations for all six model components.Extensions of Michaelis–Menten-based single resource grazingformulations to multiple resources resulted in periodic solutionsfor a large portion of the qh space. Conversely, extensionsof the sigmoidal grazing formulation to multiple resources resultedin steady solutions for a large portion of qh parameterspace. Our results demonstrate the consequences of the functionalform of biological processes on the form of the model solutions.Both the steady or oscillatory nature of state variable concentrationsand the likelihood of their elimination are important considerationsfor ecosystem-modelling studies, particularly when attemptingto model an ecosystem in which multiple phytoplankton and zooplanktoncomponents are thought to persist simultaneously for at leasta portion of the seasonal cycle.  相似文献   

9.
Temporal changes in ciliate assemblages during the course ofa bloom of the harmful microalga Heterocapsa circularisquama(Dinophyceae) were investigated and consecutive estimates ofspecies-specific maximum grazing losses were analyzed from Augustto September 1998 at a site in western Hiroshima Bay, the SetoInland Sea of Japan. Temporal increases of the H. circularisquamamean concentration in the water column were observed twice (25–29August and 7–10 September) with the maximum concentration(ca. 4000 cells mL–1) being recorded on 25 August. Themain ciliate genera during the bloom were Favella, Tontonia,Eutintinnus, Tintinnopsis and Amphorellopsis. Increases of Favellaand Tontonia were observed when the concentration of H. circularisquamaranged from 260 to 1170 cells mL–1. Total maximum grazingloss estimated from the abundance and ingestion rate of eachciliate species on H. circularisquama ranged from 1 to 75% standingstock removed d–1 of the H. circularisquama concentration.High grazing losses mainly due to the genera Favella and Tontoniaoccurred during the period when the H. circularisquama concentrationwas decreasing. These results suggest that grazing by ciliateassemblages can influence the population dynamics of H. circularisquamadespite the potentially toxic nature of the phytoplankter.  相似文献   

10.
Microzooplankton grazing and community structure were investigatedin the austral summer of 1995 during a Southern Ocean Drogueand Ocean Flux Study (SODOFS) at the ice-edge zone of the LazarevSea. Grazing was estimated at the surface chlorophyll maximum(5–10 m) by employing the sequential dilution technique.Chlorophyll a concentrations were dominated by chainformingmicrophytoplankton (>20 µm) of the genera Chaetocerosand Nitzschia. Microzooplankton were numerically dominated byaloricate ciliates and dinoflagellates (Protoperidinium sp.,Amphisoleta sp. and Gymnodinium sp.). Instantaneous growth ratesof nanophytoplankton (<20 µm) varied between 0.019and 0.080 day–1, equivalent to between 0.03 and 0.12 chlorophylldoublings day–1. Instantaneous grazing rates of microzooplanktonon nanophytoplankton varied from 0.012 to 0.052 day–1.This corresponds to a nanophytoplankton daily loss of between1.3 and 7.0% (mean = 3.76%) of the initial standing stock, andbetween 45 and 97% (mean = 70.37%) of the daily potential production.Growth rates of microphytoplankton (>20 µm) were lower,varying between 0.011 and 0.070 day–1, equivalent to 0.015–0.097chlorophyll doublings day–1. At only three of the 10 stationsdid grazing by microzooplankton result in a decrease in microphytoplanktonconcentration. At these stations instantaneous grazing ratesof microzooplankton on microphytoplankton ranged between 0.009and 0.015 day–1, equivalent to a daily loss of <1.56%(mean = 1.11%) of initial standing stock and <40% (mean =28.55%) of the potential production. Time series grazing experimentsconducted at 6 h intervals did not show any diel patterns ofgrazing by microzooplankton. Our data show that microzooplanktongrazing at the ice edge were not sufficient to prevent chlorophylla accumulation in regions dominated by rnicrophytoplankton.Here, the major biological routes for the uptake of carbon thereforeappear to be grazing by metazoans or the sedimentation of phytoplanktoncells. Under these conditions, the biological pump will be relativelyefficient in the drawdown of atmospheric CO2.  相似文献   

11.
Among studies of copepod grazers fed harmful algae, decreasedgrazing and fecundity are the most common results. The causesof decreased grazing (physiological incapacitation, behavioralavoidance or lack of stimulation) and decreased fecundity (toxicversus nutritional effect) vary among studies. This study useda series of controlled laboratory experiments to investigatethe cause of decreased grazing and fecundity in the copepodAcartia tonsa fed sole and mixed diets of the harmful alga,Karenia brevis. Copepods fed K. brevis mixed with the nutritionallyviable dinoflagellate Peridinium foliaceum had higher ingestionrates and offspring production than copepods fed a sole dietof K. brevis (even when K. brevis was virtually nontoxic). Copepodsfed mixtures did not discriminate between P. foliaceum and K.brevis while feeding. The results of this study suggest thatK. brevis is not toxic to A. tonsa but lacks some chemical componentresponsible for stimulating a grazing response in A. tonsa aswell as the nutritional requirements for normal offspring production.  相似文献   

12.
Cells of the green alga Selenastrum capricomuxum were immobilizedin permeable alginate beads to prevent them from being grazedby zooplankton. Algae were able to grow in these beads and wereused as a new technique to estimate bioavailable phosphorus(P) released by zooplankton. P-limited algal cells were encapsulatedin alginate beads and used to measure P-release by Daphnia pulexfeeding on P-saturated and P-limited free algal cells. Daphnidsgrazing on P-saturated cells released 20 times more P availablefor the immobilized algae than animals grazing on P-limitedcells (0.06 versus 0.003 µg P mg–1 Daphnia-DW h–1).  相似文献   

13.
Some characteristics of the carbon compounds released by Daphnia   总被引:2,自引:0,他引:2  
The Daphnia species studied released 18–100% of the algalcarbon ingested as dissolved and particulate carbon compounds,presumably mainly as feces. The particulate fraction constitutedon average 79 5% of the total released compounds, leaving21% as dissolved compounds. The particles released were verysmall and transparent, not visible by light microscopy Moreover,they contained significant amounts of chlorophyll derivatives.The dissolved compounds consisted mainly of small molecules(mol. wt >103 daltons), and were shown to be utilized byplanktonic bacteria. Our results show that particulate organiccarbon and chlorophyll a should not be used as measures foralgal carbon in grazing experiments with Daphnia. Both theseparameters were influenced by the animals' fecal particles,yielding lowered clearance rates compared with those obtainedby using cell numbers as a measure for algal carbon.  相似文献   

14.
The current state of the art in automated measurement of grazingrates of zooplankton and bivalves is evaluated. Limitationsto the development of automated methods are discussed with referenceto theoretical considerations. Different approaches to time-seriesmeasurements are examined, and some inadequately investigatedtime scales for measurement of grazing rates are outlined. Levelsof automation of existing experimental systems are described,and a recently developed grazing system based on in vivo fluorescenceadvanced. The new system is suited to use with zooplankton orbivalves, but depends on precise calibration of in vivo fluorescence.It facilitates rapid measurement of functional response to foodconcentration, estimation of time-series rates at constant foodconcentrations, and measurement of rates while simulating patchyfood distribution. Results derived from experiments with krill(Nyctiphanes australis) and cockles (Chione stutchburyi) usingthis grazing system are presented, and some future directionsfor instrument development suggested.  相似文献   

15.
In a series of batch experiments in the dark the heterotrophicdinoflagellate Oxyrrhis marina grazed three phytoplankton prey(Phaeodactylun tricornutum, Isochrysis galbana and Dunaliellateriolecta) with equal efficiency. Growth rates of the dinoflagellateranged between 0.8 and 1.3 day–1 Maximum observed ingestionrates on a cell basis varied according to the size of the preyfrom about 50 cells flagellate–1 day–1 when D.tertiolectawas the prey to 250–350 cells fiagellate–1 day–1when the other species were eaten. However, when compared ona nitrogen basis, ingestion rates were independent of prey type.Both ingestion and growth ceased when prey cell concentrationsfell below a threshold concentration of about 105 cells ml–1.Maximum specific clearance rates were 0.8x1040ndash;5.7x104it day which is considerably lower than that found for heterotrophicdinoflagellates in oceanic waters and may explain why O.marinagenerally thrives only in productive waters. The timing of NHregeneration was linked to the C:N ratio of the prey at thestart of grazing. Regeneration efficiencies for NH4. never exceeded7%; during the exponential phase and were 45% well into thestationary phase. These results are comparable to those obtainedwith heterotrophic flagellates and demonstrate that the bioenergeticpatterns of grazing and nutrient cycling by different protozoaare very similar. Moreover, they support the notion that toachieve 90+% nutrient regeneration in the open ocean, as iscurrently believed, the microbial food loop must consist ofmultiple feeding steps. Alternatively, nutrient regenerationefficiencies may be considerably lower than 90%.  相似文献   

16.
The impact of fish-mediated changes on the structure and grazingof zooplankton on phytoplankton and bacterioplankton was studiedin Lake Søbygaard during the period 1984–92 bymeans of in vitro grazing experiments (14C-labelled phytoplankton,3H-labelled bacterioplankton) and model predictions. Measuredzooplankton clearance rates ranged from 0–25 ml l–1h–1 on phytoplankton to 0–33 ml l–1 h–1on bacterioplankton.The highest rates were found during thesummer when Daphnia spp. were dominant. As the phytoplanktonbiomass was substantially greater than that of bacterioplanktonthroughout the study period, ingestion of phytoplankton was26-fold greater than that of bacterioplankton. Multiple regressionanalysis of the experimental data revealed that Daphnia spp.,Bosmina longirostris and Cyclops vicinus, which were the dominantzooplankton, all contributed significantly to the variationin ingestion of phytoplankton, while only Daphnia spp. contributedsignificantly to that of bacterioplankton. Using estimated meanvalues for clearance and ingestion rates for different zooplankters,we calculated zooplankton grazing on phytoplankton and bacterioplanktonon the basis of monitoring data of lake plankton obtained duringa 9 year study period. Summer mean grazing ranged from 2 to4% of phytoplankton production and 2% of bacterioplankton productionto maxima of 53 and 88%, respectively. The grazing percentagedecreased with increasing density of planktivorous fish caughtin August each year using gill nets and shore-line electrofishing.The changes along a gradient of planktivorous fish abundanceseemed highest for bacterioplankton. Accordingly, the percentagecontribution of bacterioplankton to the total ingestion of thetwo carbon sources decreased from a summer mean value of 8%in Daphnia-dominated communities at lower fish density to 0.7–1.1%at high fish density, when cyclopoid copepods or Bosmina androtifers dominated. Likewise, the percentage of phytoplanktonproduction channelled through the bacteria varied, it beinghighest (5–8%) at high fish densities. It is argued thatthe negative impact of zooplankton grazing on bacterioplanktonin shallow lakes is highest at intermediate phosphorus levels,under which conditions Daphnia dominate the zooplankton community.  相似文献   

17.
The short-term, in situ diel grazing of Ceriodaphnia sp. duringperiods of stratification and mixing was investigated usingthe technique of fluorimetric analysis of the gut pigments.There were considerable seasonal differences in feeding behaviourIn mixing, when the concentration of chlorophyll a in the watercolumn was high and Ceriodaphnia abundance was low, gut pigmentcontents showed clear diel variation patterns, probably dueto diel variations of the high values of feeding activity observedin the 24 hour cycle The maximum values were found at dawn.On the other hand, no diel variations in gut pigment were observedduring periods of stratification and while the amounts of pigmentsin the water and in the gut were very low, species abundancewas high. Taking into account the ambient conditions, the authorsdiscuss the possibility that the change of feeding of the Ceriodaphniasp. observed when the environment changed from a mixing periodto one of stratification represents a change from herbivorousto detritivorous behavior.  相似文献   

18.
We conducted grazing experiments to test whether larger-bodiedDaphnia pulicaria have a different effect from smaller-bodiedDaphnia galeata mendotae on the composition of summer algalassemblages in eutrophic lakes. Three separate cubitainer experimentswere run for 5 days in a replicated factorial design utilizingtwo algal community types and the two Daphnia species. Inorganicphosphorus and nitrogen were added to prevent nutrient limitationof the algae. Both edible and inedible size fractions of chlorophylla increased in cubitainers without Daphnia spp. Grazer additionusually resulted in a reduction in edible chlorophyll; reductionswere greater in D.pulicaria cubitainers. Grazing by Daphniaspp. on presumed inedible chlorophyll was variable. Algal sizewas not always a good predictor of grazeability. The resultsof this study indicate that D.pulicaria, because of its greaterfiltration potential and ability to ingest larger particles,provides a stronger control on inedible-sized algae when comparedto equal numerical densities of D.g.mendotae. However, Aphanizomenonincreased as a response to heavy grazing pressure by D.pulicariaon other algal species. This suggests that biomanipulation effortsthat promote large-bodied Daphnia may not produce desirableresults if nutrient inputs remain high.  相似文献   

19.
Phagotrophic protists are major components of pelagic food webs,both as consumers of bacterial and phytoplankton cells, andas regenerators of inorganic nutrients. In this study, we estimatedthe efficiency of ammonium regeneration by protists feedingon bacteria within natural plank-tonic assemblages, using a15N tracer method, in which the excretion of 15N-labeled ammoniumdue to grazing on 15N pre-labeled bacteria was followed overtime. We tested this approach in experiments based on the additionof heat-killed 15N-labeled bacteria to laboratory cultures andto samples of coastal seawater. During two experiments, variationin abundance of bacterivores and bacterioplankton resulted innon-constant grazing rates. Deterministic computer models thatused abundance of bacteria and protists as variables were developedto estimate best-fit values of grazing mortality (g, h–1)and of ammonium regeneration efficiency (RE, fraction of theinitial 15N label in added bacteria which is released as ammonium).Estimated ammonium RE were 0.30–0.35 for one trophic linksystems with both a monospecific culture and a mixed speciesassemblage of bacterivorous flagellates. RE was higher for multi-trophicstep food webs: 0.60 for 5 µm pre-screened coastal seawaterand 0.90 for whole coastal seawater.  相似文献   

20.
A series of short-term in situ experiments was conducted intwo Cape Cod embayments to estimate mortality rates of the toxicdinoflagellate, Gonyaulax tamarensis, resulting from grazingby zooplankton. Rates of grazing by the whole zooplankton communityand by specific zooplankton populations were measured at variouspoints in the G. tamarensis bloom cycle. The planktonic larvaeof the spionid polychaete Polydora ligni and the tintinnid ciliateFavella sp. were important grazers in the systems studied. Gonyaulax-specificclearance rates effected by Polydora ranged from 0.02 to 0.5ml individual–1 h–1; for Favella the range was aboutan order to magnitude lower. Peak population densities wereclose to 900 and 400 individuals 1–1 for P. ligni andFavella, respectively. Whether measured directly or predictedas the product of individual clearance rates and numerical abundance,rates of grazing were often higher than estimated algal divisionrates in years when blooms failed to develop. A simulation modelcorroborated the results of the field study, demonstrating thatgrazing can be a significant source of mortality during blooms,and can suppress bloom development when grazers are abundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号